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Instanton for the Kraichnan passive scalar problem
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We consider high-order correlation functions of the passive scalar in the Kraichnan model. Using the
instanton formalism we find the scaling exponentszn of the structure functionsSn for n@1 under the addi-
tional conditiondz2@1 ~whered is the dimensionality of space!. At n,nc @wherenc5dz2/2(22z2)] the
exponents arezn5(z2/4)(2n2n2/nc), while at n.nc they aren independent:zn5z2nc/4. We also estimate
n-dependent factors inSn , particularly their behavior atn close tonc . @S1063-651X~98!04011-2#

PACS number~s!: 47.27.Ak, 05.20.2y, 05.40.1j, 47.10.1g
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INTRODUCTION

Anomalous scaling is probably the central problem of
theory of turbulence. In 1941 Kolmogorov formulated h
famous theory of developed turbulence@1#, where the scaling
behavior of different correlation functions of the turbule
velocity was predicted. Experimentally one observes de
tions from the scaling exponents, proposed by Kolmogo
@2–4#. It is recognized that the deviations are related to r
strong fluctuations making the main contribution into t
correlation functions@5–7#. This phenomenon, which is usu
ally called intermittency, is the most striking peculiarity
developed turbulence.

One of the classical objects in the theory of turbulence
a passive scalar advected by a fluid. The role of the pas
scalar can be played by temperature or the density of po
ants. Correlation functions of the scalar in a turbulent fl
possess a scaling behavior that was established by Obu
@8# and Corrsin@9# in the frame of a theory analogous to th
of Kolmogorov. Intermittency enforces deviations from t
Obukhov-Corrsin exponents that appear to be even stro
than the deviations from the Kolmogorov exponents for
correlation functions of the velocity@10–13#.

Unfortunately, a consistent theory of turbulence desc
ing anomalous scaling has not been constructed yet.
accounts for the difficulties associated with the strong c
pling inherent to developed turbulence. This is the reason
attempts to examine the intermittency phenomenon in
framework of different simplified models. The most popu
model used for this purpose is Kraichnan’s model of pass
scalar advection@14#, where the advecting velocity is be
lieved to be short correlated in time and have a Gaus
distribution. That allows one to examine the statistics of
passive scalar in more detail.

The scalar in the Kraichnan model exhibits strong int
mittency even if it is absent in the advecting velocity fie
This was proved both theoretically@15–22# and numerically
@23–25#. In the theoretical works the equation for then-point
correlation functionFn was solved assuming that differe
parameters, such asz2 , 22z2 , or d21, are small~recall that
z2 is the exponent of the second-order correlation function
the passive scalar andd is the dimensionality of space!. The
order of the correlation functions that can be examined in
framework of the methods of the noted papers is boun
PRE 581063-651X/98/58~5!/5776~20!/$15.00
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from above, which does not allow one to imagine the wh
dependence ofzn on n. For that it would be enough to ge
the asymptotic behavior ofzn at n@1. There have been sev
eral attempts to find the scaling of the correlation functio
for largern. In the the work by Kraichnan@26# a closure was
assumed enabling one to findzn for any n. An alternative
scheme was proposed in@27#. An attempt to solve the prob
lem at largen was made in@28#, where ann-independent
asymptotic behavior was found.

In the present work we develop a technique based on
path-integral representation of the dynamical correlat
functions of classical fields@29–31#. We use an idea, formu
lated in@32#, that is related to the possibility of exploiting th
saddle-point approximation in the path integral at largen.
The saddle-point conditions are integro-differential equatio
describing an object that, in analogy to the quantum fi
theory, we call an instanton. The instantonic method w
already successfully used in some contexts. Results conc
ing Burgers turbulence, conventional Navier-Stokes tur
lence, and modifications of the Kraichnan model were o
tained with the help of this method in Refs.@33–36#. The
formalism presented in this paper enables one to find co
lation functions of the passive scalar for arbitraryn@1 pro-
vided dz2@1.

The paper is organized as follows. In Sec. I we formul
the Kraichnan model, introduce notation, and write down
standard path integral representation for the correlation fu
tions. This basic representation turns out to be unsuitable
the saddle-point approximation; therefore, we reformul
the problem in Sec. II. Passing to new variables that
Lagrangian separations, we get a path integral that alre
admits the use of the saddle-point approximation. In Sec
we consider the instantonic equations for the case of
structure functions. We solve these equations in the li
dz2@1, which enables us to find the anomalous scaling a
estimate then dependence ofSn . The main results of the
work are presented in Sec. III C and discussed in Conc
sion. Details of calculations are given in Appendixes.

I. KRAICHNAN MODEL

Advection of a passive scalaru by a velocity fieldv is
described by the equation
5776 © 1998 The American Physical Society
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] tu1v“u2k¹2u5f, ~1.1!

wherek is the diffusion coefficient andf is the source of the
passive scalar~say, if u corresponds to fluctuations of tem
perature, thenf represents the power of heaters!. In a turbu-
lent flow, v is a random function of time and space coor
nates. The sourcef is also assumed to be a random functio
Then passive scalar correlation functions are determined
the statistics ofv andf. Usually, one is interested in simu
taneous correlation functionsFn5^u(r1)•••u(rn)& since a
large-scale velocity destroys temporal correlations in the
lerian frame, whereas simultaneous objects are not in
enced by it.

It is convenient to examine the anomalous scaling
terms of the structure functions

Sn~r !5^uu~r/2!2u~2r/2!un&. ~1.2!

One expects a universal behavior of the structure function
the convective interval of scalesr d!r !L, wherer d is the
scale where the diffusivity becomes relevant andL is the
correlation length of the scalar sourcef. Namely, one ob-
serves a scaling dependence onr :

Sn~r !}r zn. ~1.3!

In the frame of the Obukhov theory@8,9# zn5(n/2)z2 .
Therefore, the differences (n/2)z22zn , which are usually
called anomalous exponents, characterize the anoma
scaling. One can write an estimate

Sn~r !;An@S2~r !#n/2S L

r D ~n/2!z22zn

, ~1.4!

whereAn is an n-dependent factor. Note that Eq.~1.4! im-
plies that the structure functions in the convective interval
not depend on the diffusion lengthr d . The intermittency
leads to the conclusion that values of the structure functi
should be much larger than their naive Obukhov estimati
@7#. Therefore, (n/2)z22zn.0 and we conclude that thes
are the anomalous exponents that reflect the intermitten

A. Formulation of the problem

In the Kraichnan model bothv andf are assumed to b
independent random functions,d correlated in time and de
scribed by Gaussian statistics homogeneous in space. T
fore, statistical properties of the fields are entirely charac
ized by the pair correlation functions

^f~ t1 ,r1!f~ t2 ,r2!&5x~r 12!d~ t12t2!, x~0!5P2 ,

^va~ t1 ,r1!vb~ t2 ,r2!&5Vab~r12r2!d~ t12t2!.

Here x(r ) is a smooth function decaying on the scaleL,
which is the pumping length. The constantP2 has the mean-
ing of the pumping rate ofu2. The tensorVab(r ) has a
characteristic scaleLv , which has the meaning of the pump
ing length of the velocity. We will assume thatLv@L. Since
r !L in the convective interval, we will needVab only at r
!Lv , where one can write

Vab~r!5V0dab2Kab~r!. ~1.5!
.
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The quantityV0 is anr-independent constant that is the ma
contribution to the velocity correlation function on scal
less than the velocity pumping lengthLv . Nevertheless, be
sidesV0 , we should also keep a smallr-dependent correction
K sinceV0 corresponds to advection homogeneous in sp
and therefore does not contribute to simultaneous correla
functions ofu.

The velocity correlation function is assumed to poss
some scaling properties, namely,K(r)}r 22g, where the ex-
ponentg characterizes the roughening degree of the velo
field. The field is smooth in space atg50 and is extremely
irregular atg52. We will treat an arbitraryg satisfying the
inequality 0,g,2. The tensorial structure ofKab is deter-
mined by the incompressibility condition divv50, implied
in the Kraichnan model

Kab~r!5
D

d
r 2gF22g

d21
~r 2dab2r ar b!1r 2dabG . ~1.6!

Here d is the dimensionality of space andD is a constant
characterizing the strength of velocity fluctuations. One
sumes that the fluctuations are strong enough to ensure
large value of the Pe´clet number, that is,

DL22g@k. ~1.7!

The inequality~1.7! ensures the existence of the convecti
interval of scales since it can be rewritten asr d!L, wherer d
is the diffusive length

r d
22g;k/D. ~1.8!

The assumption of the Gaussian nature and zero corr
tion time for the fieldsv andf allows one to derive a close
partial differential equation for thenth order correlation
function Fn of u @14,37,17#. For the simultaneous pair cor
relation functionF2(r 12)5^u(t,r1)u(t,r2)& one can solve
the equation and find the explicit expression forF2 . In the
convective interval@14#

S2~r !52@F2~0!2F2~r !#;
P2

D
r g. ~1.9!

Comparing Eq.~1.9! with Eq. ~1.3!, one concludes that the
exponentg introduced by Eq.~1.6! directly determines the
scaling of the second-order structure functionz25g.

However, forn.2 the equations forFn are too compli-
cated to be integrated exactly. In@16–19# the equations were
analyzed in the limits 22g!1 anddg@1, where the statis-
tics of the passive scalar is close to Gaussian. The ana
led to an anomalous scaling that can be expressed in term
the exponentszn of the structure functions~1.2! and ~1.3!,

zn5
ng

2
2

22g

2~d12!
n~n22!. ~1.10!

This expression covers both limit cases 22g!1 and dg
@1. The first term on the right-hand side of Eq.~1.10! rep-
resents the normal scaling, whereas the second one is jus
anomalous scaling exponent. The calculations leading to
~1.10! are correct if the anomalous contribution is mu
smaller than the normal one, which implies the inequality
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5778 PRE 58E. BALKOVSKY AND V. LEBEDEV
n!
dg

22g
. ~1.11!

Below we will develop a different approach to the proble
It will allow us to find the exponentszn @Eq. ~1.3!# of the
structure correlation functions~1.2! for any ordern@1 under
the same additional conditiondg@1 as in@17,18#.

B. Path integral

Generally, the statistics of classical fields in the prese
of random forces can be examined with the help of the fi
technique formulated in@29–31#. In the framework of the
technique, correlation functions are calculated as path i
grals with the weight exp(iI), whereI is the effective action
related to dynamical equations for the fields. For the pas
scalar in the Kraichnan model the effective action is

iIu5 i E dt dr@p] tu1pv“u1k“p“u#

2
1

2E dt dr1dr2x~ ur12r2u!p~ t,r1!p~ t,r2!,

~1.12!

wherep is an auxiliary field conjugated tou. The first term
in the effective action~1.12! is directly related to the left-
hand side of Eq.~1.1!. The quadratic in thep term in Eq.
~1.12! appears as a result of averaging over the statistic
the pumpingf.

Simultaneous correlation functions ofu can be repre-
sented as functional derivatives of the generating functio

Z~l!5 K expF i E dr l~r!u~ t50,r!G L , ~1.13!

where angular brackets designate averaging over the s
tics of f andv. With the help of the action~1.12! the gen-
erating functional can be rewritten as the path integral

Z~l!5E Du DpDv expF2F~v !1 iIu

1 i E dr l~r!u~ t50,r!G . ~1.14!

Here F(v) determines the statistics of the velocity fiel
Since we assume the Gaussian nature of the statistics,F(v)
is a functional of second order overv with the kernel deter-
mined by the pair correlation function~1.5!. KnowingZ(l),
one can restore the probability distribution function~PDF! of
u. It is convenient to treat the PDF of a particular object

q5E dr b~r!u~ t50,r!, ~1.15!

with a given functionb(r). For example, the set of the stru
ture functions~1.2! can be assembled into the PDF of t
scalar difference in two pointsu(r/2)2u(2r/2), which is
the object~1.15! with b(r1)5d(r12r/2)2d(r11r/2). The
PDF of q is written as
.

e
d

e-

e

of

al

tis-

P~q!5E
2`

` dy

2p
exp~2 iyq!Z@yb~r!#. ~1.16!

Moments ofq are then expressed as

^uqun&5E
2`

`

dq uqunP~q!. ~1.17!

We will be interested in the high-order correlation fun
tions of q or, in other words, we consider the limitn@1.
This is equivalent to examining the largeq tail of the PDF
~1.16!. One could expect@32# that the tail can be calculate
in the saddle-point approximation since there is a large
rameterq in the corresponding path integral. Unfortunate
direct application of the method to the integral~1.16! or to
the moments~1.17! does not lead to success.

To recognize the reason, let us consider the transfor
tion of the variables@32# ~see also@35#!

v→Xv, p→Xp, t→X21t, y→Xy, k→Xk.

One can check that under this transformation all the term
the square brackets on the right-hand side of Eq.~1.14! ac-
quire the factorX, which means that in the saddle-point a
proximation ln@Z(yb)#5y f(y/k) with some unknown func-
tion f . On the other hand, we expect that correlati
functions of the scalar itself~but not of its gradient, for ex-
ample! do not depend on the diffusivity and the results of t
works @15–19,21,22,37# confirm the expectation. Then, a
smallk the functionf remains ak-independent constant an
we obtain

lnZ~yb!}uyu. ~1.18!

Unfortunately, Eq.~1.18! does not help to restoreP(q) since
after substituting it into Eq.~1.16! we realize that the char
acteristic value ofy in the integral can be estimated asy
;q21. Therefore, at largeq the main contribution to the
integral is determined by the region where Eq.~1.18! does
not work.

We conclude that the naive instantonic approach to
problem fails. The reason is that for the instanton the vel
ity field is fixed ~does not fluctuate! in time and space. Ob
viously, a saddle-point solution is anisotropic because of
incompressibility condition divv50. Fluctuations related to
smooth variations of the anisotropy axis in time and sp
are strong and destroy the saddle-point approximation for
tail of the PDFP(q) or for the high moments ofq. Thus we
should transform the problem to more adequate variab
where fluctuations of the velocity are partly taken into a
count. This is the only chance to construct an instanton w
weak fluctuations on its background. This is the goal of
next section.

II. LAGRANGE FORMULATION

As we mentioned above, the diffusivityk does not enter
the result for the structure functions. Therefore, we will a
sumek50 in all the following calculations. However, on
should be careful since in this case it is impossible to d
with point objects. To provide a regularization, we shou
assume that the characteristic scales of the functionb in Eq.
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~1.15! are larger thanr d . In addition, the scales are to b
much smaller thanL since we are going to examine correl
tion functions in the convective interval.

In the diffusionless case the left-hand side of Eq.~1.1!
describes the fieldu moving together with the fluid. Then i
is natural to pass into the Lagrangian frame where the p
cess is trivial. For that purpose we introduce Lagrangian
jectories%(t) that obey the equation

] t%5v~ t,%!. ~2.1!

We will label the trajectories by the positions of fluid pa
ticles att50: %(t50)5r. Equation~1.1! ~wherek is omit-
ted! can easily be solved in terms of the Lagrangian traj
tories

u~0,r!5E
2`

0

dt f@ t,%~ t,r!#, ~2.2!

Since we are interested in the fieldu at t50, due to causal-
ity, the integration is performed over negative time. The
fore, Eq.~2.1! should be solved backward in time.

A simultaneousnth-order correlation function ofu can be
written as the product ofn integrals~2.2!, averaged over the
statistics ofv andf. In this representation, averaging ov
the pumping is very simple. For example, the two-point c
relation function is

F25E
2`

0

dt^x~R12!&v , ~2.3!

R12~ t ![R~ t,r1 ,r2!5u%~ t,r1!2%~ t,r2!u. ~2.4!

The angular bracketŝ&v in Eq. ~2.3! denote averaging ove
the statistics ofv only since the statistics off is already
accounted for there. Similar formulas can be written for c
relation functions of higher orders. Once this is done, o
can assemble them into the generating functional~1.13!

Z~l!5 K expH 2
1

2E dt dr1dr2 x~R12!l1l2J L
v

, ~2.5!

wherel1,25l(r1,2). Calculating the moments of the obje
~1.15! in accordance with Eqs.~1.16! and ~1.17! we get

^uqun&5E dy dq

2p
^exp~2Fl2 iyq1n lnuqu!&v ,

~2.6!

Fl5
y2

2 E dt dr1dr2 x~R12!b~r1!b~r2!. ~2.7!

At this point, we would like to stress the close connecti
between the statistics of the passive scalar and that of
grangian trajectories@40#, which can be seen from Eq.~2.5!.

A. Statistics of Lagrangian separations

Equations~2.5! and ~2.6! show that the correlation func
tions we are interested in are expressed via the averag
exp(2Fl) over the velocity. Note thatFl @Eq. ~2.7!# de-
pends only on the absolute valuesR12(t) of Lagrangian dif-
o-
-

-

-

-

-
e

a-

of

ferences~2.4!. Therefore, instead of averaging over the s
tistics ofv, one could find the answer by averaging over t
statistics of the Lagrangian separationsR12. Due to zero cor-
relation time of the velocity field, the statistical properties
the fieldR12 appear to be relatively simple.

To establish the statistics ofR12 we start from the relation

g21] tR12
g 5z12[R12

g22R12a~v1a2v2a!, ~2.8!

following from Eqs.~2.1! and~2.4!. As shown in Appendix ,
the average value ofz12 is nonzero:

^z12&52D. ~2.9!

Next, exploiting the expression~1.5! for the velocity corre-
lation function, one can find the irreducible pair correlati
function

^^z12~ t1!z34~ t2!&&5
2D

d
Q12,34d~ t12t2!. ~2.10!

The explicit expression for the functionQ is rather cumber-
some:

Q12,345
d112g

4~d21!
R12

g22R34
g22~R23

22g1R14
22g2R13

22g2R24
22g!

3~R23
2 1R14

2 2R13
2 2R24

2 !2
22g

8~d21!
R12

g22R34
g22

3H 1

R13
g

~R12
2 1R13

2 2R23
2 !~R13

2 1R34
2 2R14

2 !

1
1

R23
g

~R12
2 1R23

2 2R13
2 !~R34

2 1R23
2 2R24

2 !

1
1

R14
g

~R12
2 1R14

2 2R24
2 !~R14

2 1R34
2 2R13

2 !

1
1

R24
g

~R12
2 1R24

2 2R14
2 !~R34

2 1R24
2 2R23

2 !J . ~2.11!

It can be found from the definition ofz12 @Eq. ~2.8!#, formula
~1.6!, and relations such as

R12•R135
1

2
~R12

2 1R13
2 2R23

2 !,

R12•R345
1

2
~R14

2 1R23
2 2R13

2 2R24
2 !.

In the spirit of the conventional procedure@29–31#, one
can assert that any average over the statistics ofR12 can be
found as the path integral overR12 and over an auxiliary field
m12[m(t,r1 ,r2) with the weight

K expF i E dt dr1dr2~m12g
21] tR12

g 2m12z12!G L
v

,
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where angular brackets mean averaging over the statistic
the velocity. Sincez12 is d correlated in time, the averag
can be expressed in terms of Eqs.~2.9! and~2.10! only. The
result is exp(iIR), where

iIR5 i E
2`

0

dt E dr1dr2m12~g21] tR12
g 1D !

2
D

d E2`

0

dt E dr1dr2dr3dr4 Q12,34m12m34.

~2.12!

Now, instead of Eq.~2.6! we can write

^uqun&5E dy dq

2p E DRDm eiIR2Fl2 iyq1nlnuqu.

~2.13!

The integration in Eq.~2.13! is performed over functions
of t, r1 , andr2 with some boundary conditions imposed o
them. The condition for the fieldR12 follows from %(0)5r
and reads

R12~ t50!5ur12r2u. ~2.14!

The boundary condition for the fieldm12 should bem12
(2`)50 since we deal with free integration overR12 in the
remote past. Note that due to the definition~2.4!, the trian-
gular inequalities

R121R23.R13, ~2.15!

should be satisfied for any three points. Actually, the
equalities are constraints that should be imposed on the
R12 when integrating in Eq.~2.13!.

B. General instantonic equations

In the preceding subsection we derive a formula~2.13! for
^uqun&. Its calculation is equivalent to solving some nonli
ear field theory. It looks infeasible to perform this task. W
are going to calculate the integral~2.13! in the saddle-point
approximation regarding the numbern large enough. To be
consistent, when doing the procedure one should remem
about the constraints~2.15!. Unfortunately, it is very hard to
take them into account explicitly. We will ignore the co
straints, which is correct under the following condition
First, the inequalities~2.15! should be valid in the instantoni
solution. Second, fluctuations on the background of the
stanton should be weak~this is also the applicability condi
tion of the instantonic formalism itself!. We argue in Appen-
dixes B 1 and B 2 that those conditions are satisfied if

dg@1. ~2.16!

Note also that for the condition~2.16! fluctuations of a La-
grangian separation near its average value are weak~see Ap-
pendix A 2!. The inequality~2.16! will be implied below.

Thus we obtain from the integral~2.13! in the saddle-
point approximation

^uqun&;exp~ iIR2Fl2 iyq1n lnuqu!u inst. ~2.17!
of

-
ld

er

.

-

Here solutions of the instantonic equations should be sub
tuted, which are extremum conditions for the argument
the exponent on the right-hand side of Eq.~2.13!. Variation
over m12 andR12 gives the following instantonic equations

i ~g21] tR12
g 1D !52

D

d E dr3dr4 Q12,34m34, ~2.18!

iR12
g21] tm121

D

d E dr3dr4 H 2
]Q12,34

]R12
m12m34

14
]Q13,24

]R12
m13m24J 52

y2

2
x8~R12!b~r1!b~r2!.

~2.19!

The extremum conditions overy andq read

q5 iyE dt dr1dr2 x~R12!b~r1!b~r2!, ~2.20!

iy5n/q. ~2.21!

Note that only Eqs.~2.18! and ~2.19! are true dynamical
equations, carrying the information about the dynamics
the flow, whereas Eqs.~2.20! and ~2.21! are constraints im-
posed on the instantonic solution. One needs to add to
~2.18! and ~2.19! some boundary conditions. The value
the fieldR12 is fixed att50 by Eq. ~2.14!. As for the field
m12, we already noted that it should tend to zero whent→
2`. It can be understood as the extremum condition t
appears after variation of the effective action over the bou
ary value ofR12 in the remote past.

One can easily establish the asymptotic behavior ofR12 at
utu→`. There the fieldR12 grows and loses its dependen
on r1,2. The fieldm12 tends to its ‘‘vacuum’’ zero value a
utu→`. Therefore, at largeutu the term with m12 in Eq.
~2.18! can be omitted and we find

Rg'gDutu. ~2.22!

The expression~2.22! is nothing but the Richardson law fo
divergence of Lagrangian trajectories@38#. Let us stress tha
now it holds on the classical~mean-field! level, without tak-
ing into account fluctuations on the background of the inst
ton. To clarify this point, notice that if the velocity field is
deterministic function of time and space~as it is for the naive
instanton discussed above!, then the Richardson law canno
be valid for all the Lagrangian trajectories. In our instant
we get rid of the velocity field that resulted in the emergen
of the Richardson law. Note that the triangle inequalit
~2.15! are obviously satisfied both for~2.14! and for the
asymptotic behavior~2.22!.

The expression for the action appearing in Eq.~2.13! is

iI[ iIR2Fl5 i E d tdr1dr2g21m12] tR12
g 2E,

~2.23!
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E5
y2

2 E dr1dr2x~R12!b~r1!b~r2!2 iD E dr1dr2m12

1
D

d E dr1 dr2dr3dr4Q12,34m12m34. ~2.24!

We see from Eq.~2.23! that the quantityE plays the role of
the Hamiltonian function of the system, while Eqs.~2.18!
and ~2.19! are canonical equations corresponding to
Hamiltonian function. SinceE does not explicitly depend on
time t, its value~which can be called energy! is conserved.
Actually, the energy is zero on the instantonic solution sin
at t→2` we havem12→0 andR12→`. Note that since the
Hamiltonian~2.24! explicitly depends on the coordinates v
b, there is no ‘‘momentum’’ conservation law.

Before proceeding to the solution of the instanton eq
tions, let us make a remark concerning fluctuations on
background of the instanton. In the linear approximat
over the fluctuations we obtain an estimate for the typi
fluctuation ofRg,

~dRg!2;gDRgutud21. ~2.25!

Note that the fluctuations ofR tend to zero whent→0 since
R12 is fixed att50. Comparing the estimate~2.25! with Eq.
~2.22!, we obtain

~dRg!2/R2g;d21. ~2.26!

We conclude that the fluctuations on the background of
instanton are weak providedd@1. The above evaluations ar
rough and need a more accurate analysis~see Appendix B 2!.
Nevertheless, they show that the Richardson behavior~2.22!
inherent for our instanton suppresses fluctuations on its b
ground.

The system~2.18! and ~2.19! consists of two nonlinea
integro-differential equations with boundary conditions im
posed on the opposite sides of the time interval, that is,t
50 for R12 and att52` for m12. Therefore, in the genera
case it is very difficult to solve the instanton equations. N
ertheless, one can hope that for some particular objects
system of equations can be reduced to a simpler form all
ing the complete solution. This hope comes true for
structure functions.

III. INSTANTON FOR STRUCTURE FUNCTIONS

Using the general scheme developed in Sec. II, we
examine the expressions for the structure functions~1.2! at
largen. In other words, we will be interested in the statisti
of the passive scalar difference taken at the points separ
by the distancer. Since the diffusivity is neglected, we can
not examine the differenceu(r/2)2u(2r/2) itself. Never-
theless, we can treat the statistics of the differences aver
over separations nearr. So we should consider the obje
~1.15! with

b~r1!5dLS r12
r

2D2dLS r11
r

2D . ~3.1!
e

e

-
e
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r
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-
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HeredL(r) is the function with the widthL21@r d satisfying
the condition*dr dL(r)51, which can be called a smearedd
function. Then we can write

Sn'^uqun&;exp~ iI2n1n lnuqu!u inst, ~3.2!

where we used Eq.~2.17! and substituted Eq.~2.21!.

A. Reduction

Now we turn to the instantonic equations~2.18! and
~2.19!. Let us observe that since the source on the right-h
side of Eq.~2.19! is proportional tob(r1)b(r2), the fieldm12
can be approximated as

m125
im1

2 H dLS r12
r

2D dLS r22
r

2D
1dLS r11

r

2D dLS r21
r

2D J 2
im2

2 H dLS r12
r

2D
3dLS r21

r

2D1dLS r11
r

2D dLS r22
r

2D J , ~3.3!

wherem6 are functions of time only. Writing it, we implic-
itly assumed that the fieldR12 is smooth near the point
6r/2. Then the relations~2.20! and ~2.21! give

q252nE
2`

0

dt$x~R1!2x~R2!%, ~3.4!

where we introduced

R1~ t !5R~ t,r/2,r/2!, R2~ t !5R~ t,r/2,2r/2!. ~3.5!

Substituting the expression~3.3! into the Eqs.~2.18! and
~2.19!, we obtain a closed system of ordinary different
equations form6 and R6 . It is convenient to proceed in
terms of the effective action. Substituting Eq.~3.3! into Eq.
~2.23!, we get

iI5E
2`

0

dt@g21~m2] tR2
g 2m1] tR1

g !2E#, ~3.6!

E5y2$x~R1!2x~R2!%1D~m12m2!

2
D~22g!

4d~d21!
$m2

2 w112m2m1w21m1
2 w3%. ~3.7!

Here we introduced the designations

w15
4~d112g!

22g
R2

2g24@R2
22g2R1

22g#@R2
2 2R1

2 #

2R2
2g24FR1

42g1
~2R2

2 2R1
2 !2

R2
g G , ~3.8!

w25R1
g FR1

22g

R2
22g

1
2R2

2 2R1
2

R2
2 G , w352R1

g F11
R1

g

R2
g G .

Since the effective action~3.6! depends only on the function
m6(t) and R6(t), one can obtain the system of ordina
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differential equations for the functions as extremum con
tions of the action. The boundary conditions for the eq
tions areR150 and R25r at t50 @see Eq.~2.14!# and
m6→0 at t→2`. Resolution of the system allows one
find m6 andR6 as functions of time. Once they are know
it is possible to restore the functionR12 in the whole space
from Eq. ~2.18!. The problem is discussed in Appendix B
There we argue that the functionR12 is really smooth in
space, which is a justification of the procedure described

Since we accept Eq.~2.16! d@1. Using the inequality,
one can keep in the functions~3.8! only the terms of the
main order overd. This means that one can neglect in E
~3.8! the second contribution tow1 in comparison to the firs
one and alsow2 ,w3 in comparison tow1 . Potentially this
procedure is dangerous. We will show that due to the sm
ness ofr /L, the intervals whereR22R1!R2 play an im-
portant role. Then we see that it is the difference ofR6 that
enters the first term inw1 , while the others do not contai
this smallness. Therefore, we observe cancellations
could lead to a competition ofd andL/r ~the latter paramete
is considered as the largest in the problem!. To check the
possibility, we performed calculations keeping all the ter
in Eq. ~3.8!. The calculations are sketched in Appendix
They show that in the final expressions only combinations
w1,2,3 containing the same cancellations are of importan
The legitimacy of the procedure is proved.

Omitting w2,3 in the expression~3.7! and then varying the
action ~3.6! over m1 , we get a trivial equation forR1 ,

g21] tR1
g 52D. ~3.9!

Its solution, satisfying the boundary conditionR1(0)50, is
simply

R1
g 5gDutu. ~3.10!

To examine the behavior ofR2 it is convenient to pass to th
new variables

R15Lej, R2
g 5R1

g ~11v !, m5m2R1
g . ~3.11!

As time t goes from 0 to2`, the variablej runs from
2` to 1` and v runs from 1` to 0. The latter is clear
from the asymptotic behaviorR2

g 'R1
g 5gDutu at t→2`.

The relation~3.4! in terms of the new variables is

q252n
Lg

D E
2`

1`

dj egj@x~R1!2x~R2!#. ~3.12!

Recall that the energyE entering the action~3.6! is an
integral of motion whose value is equal to zero. Thus we
perform the standard procedure of excluding a degree
freedom in a canonical system. Equating the expression~3.7!
to zero, we can expressm1 in terms ofm, v, andj. Substi-
tuting the result into Eq.~3.6!, we get

2 iI5E
2`

1`

dj~g21m]jv2H !, ~3.13!

H52mv1
m2

d
f~v !1

uyu2Lg

D
@x~R1!2x~R2!#egj,

~3.14!
i-
-

.

ll-

at

s
.
f

e.

n
of

f5~11v !224/g@~11v !2/g2121#@~11v !2/g21#.
~3.15!

Here we kept main contributions overd only. In Eq. ~3.14!
we sety252uyu2 since as follows from Eqs.~2.21! and~3.4!
y is an imaginary number. Extremum conditions for the a
tion ~3.13! read

g21
dv
dj

5
]H

]m
, g21

dm

dj
52

]H

]v
, ~3.16!

which are canonical equations for the variablesm and v in
‘‘time’’ j. Of course, Eqs.~3.16! could be obtained directly
from the extremum conditions for the action~3.6!.

To conclude, we reformulated the problem as follow
Find such a value ofy that the solution of Eqs.~3.16! with
the giveny, being substituted into Eq.~3.12!, reproduces the
correct value ofq52 in/y. Below we discuss the first an
the most difficult part of the program that is solution of th
system~3.16!. Though it cannot be integrated exactly, w
can solve the system approximately by asymptotic match
which is enough to determine the structure functionsSn .

B. General structure of the instanton

The evolution ofR2 in time j can be divided into three
stages. During the first stage, starting atj52`, both R1

andR2 are much less thanL and it is possible to substitut
both x(R1) andx(R2) by x(0). Then the last term in Eq
~3.14! is equal to zero. During the second stageR6;L and
the last term in Eq.~3.14! is of importance. During the fina
stage, whereR1'R2@L, one can again neglect the la
term in Eq.~3.14!. Note that only the second stage contri
utes toq2, which can be seen from Eq.~3.12!. Since the
Hamiltonian H @Eq. ~3.14!# does not explicitly depend on
time j during the first and third stages, its value is conserv
there. Actually, the value ofH is equal to zero during the
third stage sincem→0 andR1'R2@L at j→1`. On the
other hand, during the first stage the valueH1 of the Hamil-
tonian functionH is nonzero. Therefore, during the seco
stage the value ofH diminishes and should finally reach ze
when the trivial third stage starts. The value ofH1 as a
function of n has to be established from the matching of t
stages.

Now we are going to solve Eq.~3.16! for the first stage.
Resolving the equationH5H1 in terms ofm we get

m5
d

2f
~v2G!, ~3.17!

G~v !56Av21
4H1f

d
. ~3.18!

Then we find from Eq.~3.16!

g21
dv
dj

52G~v !. ~3.19!

At j→2` ~that is at smallutu) the functionv should de-
crease with increasingj sinceR2'r andR1 increases. To
ensure the negative value ofdv/dj in Eq. ~3.19! one should
take the positive sign of the square root in Eq.~3.18!, which
leads to a positive value ofG. The sign ofG can be changed
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if during the evolutionG turns into zero, which correspond
to the presence of a reversed point in the dependence ofv on
j.

Equation~3.19! enables one to findv as a function ofj.
Let us integrate the equation overj from 2` to some value.
Then we get

Èv
dxF1

x
2

1

G~x!G5 lnFvR1
g

r g G . ~3.20!

To avoid difficulties related to infinite values ofj and v at
the initial point, we subtracted fromG21 its asymptote
G21(x)'1/x at largex. This enforces the convergence
the integral~3.20! at largex. The constant of integration in
Eq. ~3.20! was established from the limitv→`: Since the
integral on the left-hand side of Eq.~3.20! tends to zero asv
increases, the right-hand side of Eq.~3.20! should also tend
to zero. This requirement is ensured by ther-dependent fac-
tor in Eq. ~3.20! sinceR1

g 'r g/v at v→`, as follows from
the boundary conditionR2(0)5r and Eq.~3.11!. The left-
hand side of Eq.~3.20! should be viewed as a contour int
gral, which determines its value in the case of the nonmo
tonic behavior ofv as a function ofj.

Equation~3.20! allows us to establish a relation for th
parameters characterizing the first stage. Let us conside
integral over the whole first stage. Then we should substi
v5v* in Eq. ~3.20!, wherev* is the value ofv at the end of
the first stage. The initial substage~where v*1) gives a
constant of order unity in the integral on the left-hand side
Eq. ~3.20! sinceG(x)'x there. We neglect the contributio
substitutingv;1 as the lower limit in the integral. Then th
integral *dx/x produces just lnv, which is canceled by the
corresponding term on the right-hand side. Next, at
boundary between the first and the second stagesR2;L
since the pumping enters the game there. Therefore, with
logarithmic accuracy one can write

2E
1

v* dx

G~x!
5g lnS L

r D . ~3.21!

We see that there is a large parameterL/r in the argument of
the logarithm on the right-hand side of Eq.~3.21!. An analy-
sis shows that due to this large parameter there are only
possibilities to satisfy the relation~3.21!. Both of them are
related to zeros of the functionG because only near th
points whereG is small can the integral reach a large valu
The first possibility is realized whenG is zero only atv
50. In this casev* !1 andv is a monotonically decreasin
function. The second possibility is thatG is zero at some
point v5v r . That is just the reverse point where the deriv
tive dv/dj changes its sign; see Eq.~3.19!. Then the integral
on the left-hand side of Eq.~3.21! is determined by the vi-
cinity of the point sinceG is small there.

A choice between the possibilities depend on the value
H1 . If H1.Hc , where

Hc52
dg2

8~22g!
, ~3.22!
o-
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thenG cannot be zero~except for the pointv50). Then the
integral on the left-hand side of Eq.~3.21! reaches its large
value atv!1. Substituting into Eq.~3.18! the asymptotic
expression

f'
2~22g!

g2
v2, ~3.23!

valid at v!1, we can calculate the integral on the left-ha
side of Eq.~3.21! with the logarithmic accuracy and find

ln v* 5gA12H1 /Hc lnS r

L D . ~3.24!

We see that due tor !L, indeedv* !1.
In the opposite caseH1,Hc the situation is more com

plicated. From the asymptotic expression

G2~v !'F2
8~22g!

dg2
~Hc2H1!1

42g

2g
vGv2, ~3.25!

valid at v!1, we see thatG is zero atv5v r , where

v r5
16~22g!

dg~42g!
~Hc2H1!. ~3.26!

It is just the reverse point where the derivativedv/dj
changes its sign. Therefore, the sign ofG is positive during
the initial part of the first period and negative during the fin
one. Thus we should take the upper sign in Eq.~3.18! for the
first part and the lower sign for the second part. The m
contribution to the left-hand side of Eq.~3.21! is determined
by the region near the reverse pointv2v r;v r where we can
use the expression~3.25!. The explicit integration gives

A d

2~22g!

p

AHc2H1

5g ln
L

r
. ~3.27!

Since the logarithm is large,H1 is close toHc and hence
v r!1, as we implicitly assumed in the expression~3.25!.
Note that Eq.~3.27! does not fix the value ofv* , as it was
for H1.Hc .

Now we should extract additional relations that alo
with Eq. ~3.24! or ~3.27! will fix the instantonic solution and
determine the final answer for the structure functions. It c
be done by establishing the evolution during the second s
and by its subsequent matching with the first stage. Unfo
nately, the procedure is rather lengthy and is individual
each particular case. We present the calculations in App
dix D.

C. Expressions for structure functions

Based on the reasoning given in the preceding subsec
and on the calculations described in Appendix D, one c
establish expressions for the structure functions from the
lation ~3.2!. Here we enumerate basic results, referring
reader interested in technical details to Appendix D.

The caseH1.Hc is realized ifn,nc ~see Appendix D 1!,
where
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nc5
dg

2~22g!
. ~3.28!

Calculating the actionI andq ~see Appendix D 1! and sub-
stituting the result into Eq.~3.2!, we obtain

Sn;S n

g

P2C1

D
LgD n/2S r

L D zn

. ~3.29!

zn5
ng

2
2

~22g!n2

2d
. ~3.30!

The quantityC1 in the expression~3.29! is a constant of
order unity, whose value depends on the shape ofx ~that is,
on the details of the pumping! and is consequently nonun
versal. Note that ther-independent factor in Eq.~3.29! is
determined by the single-point root-mean-square value of
passive scalar

u rms
2 ;

P2

Dg
Lg. ~3.31!

Comparing the expression~3.30! with Eq. ~1.10!, we see that
they coincide under the conditionsn@1 andd@1 that were
implied in our derivation. Surprisingly, then dependence o
zn given by Eq.~1.10! is correct not only in the limit~1.11!
~that is, forn!nc), but up ton5nc , which is the boundary
value for Eqs.~3.29! and ~3.30!.

A detailed consideration of the caseH1.Hc is presented
in Appendix . It shows that this possibility is realized atn
.nc . Then the scaling exponentszn appear to ben indepen-
dent and equal to the value

zc5
dg2

8~22g!
. ~3.32!

Then-dependent numerical factors inSn can be found in two
limits: n2nc!nc andn@nc . The former case is discusse
below, while in the latter case one can obtain~see Appendix
D 2!

Sn;S n

g

P2C2

D
LgD n/2S r

L D zc

. ~3.33!

The quantityC2 in Eq. ~3.33! is again a nonuniversal con
stant of order unity. The expression~3.33! corresponds to the
factorized Gaussian PDF

P~q!;S r

L D zc

expS 2
gDq2

2C2P2LgD . ~3.34!

Let us stress that when calculatingSn'^uqun& with the help
of the PDF~3.34!, the characteristicq is of the order of the
single-point root-mean-square value of the passive sc
~3.31! and the relatively small value of the result~3.33! com-
pared to a single-point value is ensured only by the sm
r-dependent factor in Eq.~3.34!. In Appendix D 3 we estab-
lish the inequality
e

ar

ll

ln
n

d
,g ln

L

r
, ~3.35!

which restricts the region where the expression~3.33! is cor-
rect. For largern the character of the PDF essential
changes and it tends to a single-point PDF that is simila
Eq. ~3.34! but does not contain ther-dependent factor.

Note that the casesg!1 and 22g!1 need a specia
analysis, which is performed in Appendix D 3. The answ
~3.33! should be slightly corrected in the caseg!1 and
keeps its form at 22g!1.

We can treat the structure functionSn as a continuous
function of n. Then the vicinity of the critical valuen5nc
requires a separate consideration, which is presented in
pendix . The main peculiarity that appears in the expressi
for the structure functions is a critical dependence onn. The
expression for the structure functions can be written as

Sn;F ~n2nc!
2

gnc

P2C6

D
LgGnc/2S r

L D zn

, ~3.36!

which implies the conditionun2ncu!nc . The factorsC6

are nonuniversal constants of order unity which are differ
for the casesn,nc and n.nc . The exponentszn in the
expression~3.36! are determined by Eq.~3.30! if n,nc and
zn5zc @Eq. ~3.32!# if n.nc . In the consideration made
above we suggested thatr /L is the smallest parameter of ou
theory. However, ifn→nc , then unc2nu starts to compete
with r /L and at small enoughnc2n the consideration pre
sented in Appendix is inapplicable. The criterion that det
mines the validity of Eq.~3.36! is established in Appendix
D 4,

g ln
L

r
@

nc

un2ncu
. ~3.37!

We see that the first factor in Eq.~3.36! possesses the critica
behavior proportionalun2ncunc that is saturated in the nar
row vicinity nearn5nc , where the condition~3.37! is vio-
lated. To avoid a misunderstanding, let us stress that des
the critical behavior,Sn remains a monotonically increasin
function of n at a fixed L/r . This is obvious forn.nc ,
whereas forn,nc it accounts for the stronger dependence
n of the second (r -dependent! factor in Eq.~3.36!, which is
guaranteed by the inequality~3.37!.

We presented the results of the analysis based on
saddle-point approximation. The account of fluctuations
the background of our instanton could, in principle, chan
the results. Particularly the value ofzn could increase. There
fore, one should estimate the role of the fluctuations. T
corresponding analysis is presented in Appendix B 2.
shows that for the condition~2.16! fluctuation effects are
weak and cannot essentially change the results obtained

CONCLUSION

We have performed an investigation of the structure fu
tions in the Kraichnan model in the framework of the insta
tonic formalism. Though our approach is correct only f
large dimensionalities of space, we observe a nontrivial p
ture, some peculiarities of which could be realized in a wid
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context. Below we discuss the results obtained.
We have established then dependence of the scaling e

ponents, which are determined by the expression~3.30! for
n,nc and remain the constant~3.32! for n.nc , wherenc is
defined by Eq.~3.28!. Our results contradict the schem
proposed in@26,27#. The value~3.32! is different from and
smaller than the constant obtained in@28#, which can be
considered really as an estimate from above. Forn!nc our
expression coincides with the answer obtained perturbati
@17,18# at larged. Surprisingly, the quadratic dependence
zn on n is kept up ton5nc . Such ann dependence ofzn is
well known from the so-called log-normal distribution pr
posed by Kolmogorov@39#.

The expressions~3.29! and~3.33! reveal the combinatoric
prefactors inSn that are characteristic rather of a Gauss
distribution. A natural explanation can be found in terms
zero mode ideology@15–19,41#. We know that forn.2 the
main contribution to the structure functionSn in the convec-
tive interval is related to zero modes of the equation for
nth-order correlation function of the passive scalar. The
ponents of the modes are determined by the equation~and
could be very sensitive to the value ofn), whereas numerica
coefficients before the modes~determining their contribution
to Sn) have to be extracted from matching on the pump
scale where the statistics of the passive scalar is ne
Gaussian. This explains the combinatoric prefactors in E
~3.29! and ~3.33!. Probably the most striking feature of ou
results is the unusual behavior ofSn ~treated as continuou
functions ofn) nearn5nc , which is determined by the ex
pression~3.36!.

Now we briefly discuss the interpretation of our resul
The log-normal answer~3.29! and ~3.30! can be obtained if
we accept that for large fluctuations, giving the main con
bution to the structure functionSn , the pumping is inessen
tial and the fluctuation is smooth on the scaler . Then one
obtains from Eq.~1.1! the equation for the passive scal
difference taken at the separationr,

] tln~Du!52v•r/r 2,

where we substituted¹u by Du/r . We immediately get from
this equation a log-normal statistics forDu that is a conse-
quence of the central limiting theorem. The saturation an
.nc can be explained by the presence of quasidiscontinu
structures in the fieldu making the main contribution to th
high-order correlation functions ofu. Note also a similar
nonanalytical behavior ofzn for Burgers’ turbulence@7#,
which is explained by the presence of shocks in the velo
field. Although formally our scheme is applicable only in th
limit dg@1, one can hope that the main features of our
sults persist for arbitrary values of the parameters. This h
is supported by@42#, where a saturation ofzn was observed
in numerical simulations of the Kraichnan model atd53.
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APPENDIX A: SINGLE LAGRANGIAN SEPARATION

In this appendix we treat the statistics of a single Lagra
ian separation defined by Eq.~2.4!. The consideration will
allow us to establish the relation~2.9! and also to clarify the
condition ~2.16!.

1. Richardson law

A single Lagrangian differenceR between two Lagrang-
ian trajectories% and%1R is governed by the equation

] tRa5wa[va~%1R!2va~%!, ~A1!

with the correlation function

^wa~ t1!wb~ t2!&52Kab~R!d~ t12t2!,
~A2!

Kab~R!5
D

d
R2gH 22g

~d21!
~R2dab2RaRb!1R2dabJ ,

following from Eq.~1.6!. First of all, we get from Eqs.~2.10!
and ~2.11!

^z~ t1!z~ t2!&5
2D

d
Rgd~ t12t2!, ~A3!

where in accordance with Eq.~2.8! z5g21] tR
g. Then

R~ t2Dt !2R~ t !'R12g~ t !E
t

t2Dt

dt z~t!, ~A4!

where we believeDt.0 to be a small time interval~recall
that we treat evolution backward in time!. Averaging over
the velocity statistics on the interval fromt to t2Dt, we get
from Eqs.~A3! and ~A4!

^@R~ t2Dt !2R#2&5
2D

d
R22g, ~A5!

whereR[R(t).
Let us write now

Ra~ t2Dt !5Ra~ t !1E
t

t2Dt

dt wa@t,Ra~t!#, ~A6!

which is the direct consequence of Eq.~A1!. Then we find
from Eq. ~A6! in the approximation needed for us

R2~ t2Dt !2R2~ t !

'2RaE
t

t2Dt

dt wa~t,R!

1E E
t

t2Dt

dt dt8wa~t,R!wa~t8,R!

1Ra

]

]Rb
E

t

t2Dt

dt wa~t,R!E
t

t

dt8wb~t8,R!,
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where againR[R(t) and we used the incompressibility co
dition ]w/]R50. Averaging the expression over the veloc
statistics on the interval fromt to t2Dt, we get

^R2~ t2Dt !2R2&'2
D

d
~d122g!R22gDt, ~A7!

where we used the expressions~A2! and taken into accoun
]Kab(R)/]Ra50. Then we obtain from Eqs.~A5! and~A7!

^R~ t2Dt !2R&'
D

d
~d112g!R12gDt. ~A8!

Next, we get from the definition~2.8!

^Rg~ t2Dt !2Rg&52g^z&Dt. ~A9!

Expanding here the difference up to second order overR(t
2Dt)2R and substituting then Eqs.~A5! and ~A8! we find
finally

^z&52D. ~A10!

Note that the average is negative, which is a consequenc
considering an evolution backward in time.

The average valuêz& is obviously the same for all the
Lagrangian separations. Therefore, we arrive at Eq.~2.9!,
leading then to Eq.~2.22!, which is a manifestation of the
Richardson law.

2. Simultaneous PDF

The Kraichnan model admits a closed description of
simultaneous probability distribution functionP(R) for any
single Lagrangian differenceR. The point is that Eq.~A1! in
this case can be considered as a stochastic process with
noise on the right-hand side. It is well known how to obta
the equation forP(R) in the situation. Using the expressio
~A2! we get
y

of

e

ite

]P/]utu5Kab~R!“a“bP. ~A11!

The same problem forg52/3 was considered by Kraichna
@43#, who obtained the asymptotic behavior ofP at large
times t. Here we present a straightforward generalization
Kraichnan’s scheme for arbitraryg.

Suppose that att50 the PDF isP5R0
12dd(R2R0); the

initial condition corresponds to a fixed value ofuRu at t50.
The above expression implies the normalization condit
*dR Rd21P(t,R)51. Solutions corresponding to other in
tial conditions can be expressed via this fundamental s
tion since Eq.~A12! is linear. Due to isotropy,P will be a
function of R only. Then Eq.~A11! is rewritten as

d

D

]P
]utu

5
1

Rd21

]

]RS Rd112g
]

]R
PD . ~A12!

Of course Eq.~A12! can also be obtained directly from Eq
~A3! and ~A10!.

Performing a Laplace transform of Eq.~A12!, one obtains

P~ t,R!5E
A2 i`

A1 i` dl

2p i
expS D

d
lutu DS~l,R!, ~A13!

where all the singularities ofS(l) have to be to the left of
the integration contour. The functionS in Eq. ~A13! satisfies
the equation

lS2
1

Rd21

]

]RS Rd112g
]

]R
SD5

1

R0
d21

d~R2R0!.

The equation can be solved separately in the regionsR
,R0 andR.R0 where we deal with the homogeneous equ
tion and then the matching conditions atR5R0 give us co-
efficients. Assuming suitable boundary conditions (S is finite
at R→0 and atR→`) we get
S~l,R!5
2

g
~RR0!2d/21g/25 I nS 2Al

g
Rg/2DKnS 2Al

g
R0

g/2D if R,R0

KnS 2Al

g
Rg/2D I nS 2Al

g
R0

g/2D if R.R0 .

~A14!
e
F

ach-
Heren5d/g21, I n is the modified Bessel function, andKn
is the McDonald function.

If we are interested in the asymptotic behavior ofP(t,R)
at large timesutu@dR0

g/Dg2, thenR near the maximum ofP
satisfiesR@R0 . In addition, in the integral~A13! the char-
acteristic valuelchar}utu21 is small. Thus we can take onl
the second term in Eq.~A14! ~corresponding toR.R0)
and substitute the first term of the expansionI n(z).
G21(11n)(z/2)n. Then the integral~A13! can be taken ex-
plicitly and we obtain

P~ t,R!Rd21dR5
1

G~11n!
dj jnexp~2j!, ~A15!
j5
dRg

Dg2utu
, ~A16!

which gives the asymptotic self-similar behavior of PDF. W
see that lnP}2Rg. It is interesting that the asymptotic PD
is Gaussian atg52 for anyd. As we moveg from two to
zero, the PDF is getting more and more non-Gaussian, re
ing an extreme non-Gaussian nature~log-normality! at g
50. Note an obvious consequence of Eqs.~A15! and~A16!:

^Rmg&}utum ~A17!
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for arbitrarym. The asymptotic law~A17! is a manifestation
of the Richardson law.

It is not very difficult to calculate first moments using th
expression~A15!:

^R2&5S Dg2utu
d D 2/g G~11n12/g!

G~11n!
, ~A18!

^R4&5S Dg2utu
d D 4/g G~11n14/g!

G~11n!
. ~A19!

In the larged limit the expressions~A18! and ~A19! give

^R2&5~Dgutu!2/g, ~A20!

^R4&2^R2&2

^R2&2
5expS 4

gdD21, ~A21!

irrespective of the value ofg. We see that fluctuations ofR2

are small ifgd@1 and in the opposite limitgd!1 the cu-
mulant of R2 is much larger than̂R2&2. We conclude that
the inequality~2.16! is just the condition at whichRg only
weakly fluctuates near the value~2.22!.

APPENDIX B

Here we discuss the applicability conditions of o
scheme. First, the triangular inequality~2.15! should be sat-
e

ti

cr

t

isfied for our instantonic solution. Second, fluctuations
the background of our instanton should be weak.

1. Triangle inequality

Here we discuss the triangular inequality~2.15! that was
ignored in our saddle-point calculations. We argue that if
parameterdg is large, the inequality~2.15! is satisfied for the
instanton solution. In other words, we can say that calcu
ing the path integral~2.13!, we can dismiss the restrictio
supplied by Eq.~2.15! because the contribution from th
regions where the inequality is violated is small in this lim

Let us recall that the inequalities~2.15! are obviously sat-
isfied for both the initial condition~2.14! and the asymptotic
behavior~2.22!. Therefore, they could be violated only fo
times of the order of the instanton lifetime. Our project w
be as follows. First, we check that the inequality~2.15! holds
for the instanton solution if we consider the instantonic eq
tions in the main order over 1/d. Then we will show that
next-order terms over 1/d considered in Appendix C can lea
to violation of the inequality ifdg&1. Generally, this pro-
cedure is complicated and here we present only some ca
lations that serve as a basis for our conclusions.

As a first step we have to restore the fieldR12 in the whole
space, that is, for any two pointsr1 andr2 . This can be done
as follows. Let us consider Eq.~2.18!. Substitutingm12 in the
form ~3.3! we get
g21] tR12
g 1D52

Dm2

2d

~R12
22g1R21

22g2R11
22g2R22

22g!~R12
2 1R21

2 2R11
2 2R22

2 !

R12
22gR2

22g
. ~B1!

We kept only the main term over 1/d in Q @Eq. ~2.11!#. In Eq. ~B1! we introduced auxiliary fields

R115R~r1 ,r/2!, R125R~r1 ,2r/2!. ~B2!

They satisfy the closed system of equations

g21] tR11
g 1D52

Dm2

2d

~R12
22g1R1

22g2R11
22g2R2

22g!~R12
2 1R1

2 2R11
2 2R2

2 !

R11
22gR2

2g
, ~B3!

g21] tR12
g 1D52

Dm2

2d

~R12
22g1R2

22g2R11
22g2R1

22g!~R12
2 1R2

2 2R11
2 2R1

2 !

R12
22gR2

22g
, ~B4!
.
to

ge-
li-
to
which can be obtained from Eq.~B1!. Thus one can restor
the functionR12 in two steps: first solving Eqs.~B3! and
~B4! and then substituting the functionsR16 into Eq. ~B1!.
Though at each step one should solve ordinary differen
equations, this is a hard program and we are not able
perform it entirely. Nevertheless, we can examine some
cial cases.

First of all, using the above scheme one can establish
al
to
u-

he

behavior of the fieldR12 where r1,2 are close to6r/2. The
analysis shows that the fieldR12 is smooth near the points
This is the justification of our reduction procedure leading
the effective action~3.6!.

Simple consideration shows that the most dangerous
ometry that could lead to violation of the triangular inequa
ties ~2.15! is realized if two of the three points are close
6r/2, whereas the third one~say, r1) lies in the middle be-
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tween the points. In this caseR115R12 and the triangular
inequality tells in this case that the difference 2R122R2

should be positive. To prove the inequality let us write t
equation for this quantity

d~2R122R2!

dt

52D~2R12
12g2R2

12g!

2
Dm2

d

~R1
22g2R2

22g!~R1
2 2R2

2 !

R2
22g

~R222R12!

R2R12
.

~B5!

It is easy to show that at small times the quantity 2R12

2R2 increases. Suppose that at some moment of tim
becomes zero. Then the second term on the right-hand
of Eq. ~B5! is zero, while the first one is negative. Th
means that the difference 2R122R2 increases~recall that
we move backward in time!, though it should approach zer
from the positive side. The contradiction proves that 2R12

2R2 is always positive.
Let us now restore the terms subleading over 1/d. Adding

the terms to Eq.~B1!, we can repeat our consideratio
Again, we should consider the same geometry as ab
Writing the equation for 2R122R2 , we are convinced tha
in addition to the two terms presented in Eq.~B5! one should
take into account also the term of the next order over 1d.
This term is nonzero when 2R125R2 ; therefore, it starts to
compete with the leading term2DR2

12g(2g21) if 2R12

2R2 is small. In this case the leading term is proportiona
2g21, that is, tog at smallg. Therefore, ifgd is not large,
we cannot make a definite conclusion about the sign of
difference. Thus we arrive at the inequality~2.16! formulated
in the main text. The crucial cases investigated above m
us confident that the triangular inequality holds for our
stanton in the whole space provided the inequality~2.16! is
satisfied.

2. Fluctuations

Here we extend the analysis of the fluctuations presen
in the Sec. II B that is suitable for all the points excludin
vicinities of 6r/2. The reason is that the quantityv intro-
duced in Eq.~3.11! is small during some stages of the ev
lution. Therefore,R15R(r/2,r/2) andR25R(r/2,2r/2) are
almost equal to each other. Thus we should check that fl
tuations do not destroy this proximity. Having the problem
mind, we will assumev!1 below.

We can take the effective action~2.23! as the starting
point of our analysis. It will be enough for our purpose
examine fluctuation effects in the harmonic approximati
Therefore, we should expand the effective action~2.23! up to
second order over the fluctuationsdR12

g anddm12. The first-
order term of the expansion vanishes due to our saddle-p
equations. The second-order term can be written as
it
ide

e.

e

ke
-

ed

c-

.

int

iI ~2!5 i E dt dr1dr2dm12g
21] tdR12

g

2
D

d E dt d4r Q12,34dm12dm34

1
1

2E dt dr1dr2uyu2x~2!~R12!b~r1!b~r2!

2
D

d E dt d4r$2dQ12,34m12dm341Q12,34
~2! m12m34%,

~B6!

whered4r5dr1dr2dr3dr4 . HereR12 is the field correspond-
ing to the instanton~recall that the way to restore it in th
whole space was discussed in Appendix B 1!, m12 is deter-
mined by the expression~3.3!, andx (2),Q(2) are the second-
order terms in the expansion overdR12

g . As follows from
Eqs. ~3.1! and ~3.3!, the last two terms in Eq.~B6! are rel-
evant only for the points close to6r/2. Therefore, in the
general case we can disregard these terms and return t
estimate~2.26!, which can be obtained if only the two firs
terms in the action~B6! are kept. However, we are intereste
just in the behavior ofR12 when the pointsr1 andr2 are close
to 6r/2. In this case a special analysis is needed.

First note that short-scale fluctuations ofR12 are weak due
to the restriction~2.15!, which makes the amplitude of th
fluctuations proportional to the scale. In other words,
should deal only with smooth functionsR12. Next, due to the
presence of the second term in the effective action~B6! fluc-
tuations ofm12 are relatively suppressed for points that a
not very close to6r/2. That is a consequence of ther de-
pendence ofQ12,34 @Eq. ~2.11!#, which in the casev!1 has
deep minima if the pointsr i are close to6r/2 ~more pre-
cisely some linear combinations have deep minima; they
determine the structure of strong fluctuations ofm). There-
fore, relevant fluctuations ofR12 can be estimated in terms o
the expression~3.3! and, consequently, in terms of the r
duced action~3.6!. Since in the main approximation overd
the terms withw2 andw3 can be neglected in Eq.~3.7!, the
integration overm1 can be done explicitly. That leads sim
ply to fixing the expression~3.10! and reduces the action t
the form ~3.13!.

So we should estimate fluctuations ofv and m starting
from the action~3.13! with the Hamiltonian~3.14!. Actually,
we should check the validity of the semiclassical approxim
tion for this system with one degree of freedom. It is mo
convenient to perform this conventional procedure in ter
of the canonically conjugated variablesp and q where p
5mv/g and v5exp(q). Then the Hamiltonian~3.14! is re-
written as

H52gp1
2~22g!

d F12
42g

2g
exp~q!Gp2

2
uyu2

Dg
R1

11gx8~R1!exp~q!, ~B7!

where we took into accountv!1. The subsequent analys
shows that the semiclassical approximation is broken onl
the vicinity of the reverse pointv r that exists atn.nc . Let
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us estimate this vicinity. Near the reverse point the last te
in Eq. ~B7! can be neglected and resolving the relationH
5H1 we get

p5
nc

2 F16A42g

2g
Aexp~q!2v r G ,

where we substituted Eq.~3.26!. The semiclassical approxi
mation is broken ifp22dp/dq;1, which gives

v2v r;
v r

2

nc
2

!v r .

Since the main contribution to the integrals such as
~3.21! is made atv2v r;v r , the above narrow vicinity
~where the semiclassical approximation is broken! is irrel-
evant for our results.

Of course, the above analysis of the fluctuations on
background of our instanton is not exhaustive. Neverthel
we believe that the arguments presented demonstrate
weakness of the fluctuations.

APPENDIX C

As was mentioned in Sec. III A, keeping only the ma
term over 1/d in the action~3.6! is potentially dangerous
because of a possible conflict of the limitsd@1 and L/r
@1. If this were the case, our results would not be applica
deep in the convective interval, where the ratior /L is very
m

.

e
s,

the

le

small. Fortunately, this is not the case. In this appendix
will consider the equations, following from the action~3.6!,
not neglecting terms subleading over 1/d. We show thatr /L
does not interfere with 1/d and the scheme presented in Se
III is reproduced with minor modifications. Repeating th
scheme, we obtain expressions for the anomalous expon
zn in this formulation. To avoid a misunderstanding let
stress that our scheme is correct only in the limitdg.1 ~see
Appendix B 1!. Therefore, one could consider this append
only as a demonstration of the absence of the aforementio
conflict of limits.

Below we will assume thatD51, L51, and P251,
which can be done by rescaling timet, the coordinatesr, and
the passive scalaru. To restore the full answers one shou
add simply the factorP2 /DLg to q2 in all expressions.

Extremum conditions for the action~3.6! give four equa-
tions of motion for the quantitiesR6 andm6 . As before, the
boundary conditions to the equations areR150 and R2

5r at t50 andm6→0 at t→2`. The equations are ca
nonical, with the Hamiltonian given by Eq.~3.7!. Since it
does not depend on time explicitly, the energy is conserv
Moreover,E50, which is a consequence of the asympto
behaviorm6→0 of the instantonic solution att→2`.

As it is known from classical mechanics, for a Ham
tonian system that has an integral of motion one can red
the number of degrees of freedom by one. In our case,
can pass from the system of four canonical equations to
of two. Let us express, say,m1 via the other variables with
the help of the conservation lawE50:
m1w35a2m2w22A~m2w22a!22w3@m2
2 w112a~m21uyu2U !#, ~C1!

where

U5x~R1!2x~R2!, a5
2d~d21!

22g
. ~C2!

The sign in front of the square root in Eq.~C1! should be minus to ensure the correct behavior ofR1 at small time.
Let us make the substitution~3.11!. Then we obtain a generalization of Eqs.~3.13! and ~3.14!,

2 iI5E dj@g21m]jv2H#, ~C3!

H52m~11v !1
a2mf2

f3
2f3

21A~mf22a!22f3$m
2f112a@m1uyu2Uegj#%. ~C4!

Note that

U5x~ej!2x@~11v !1/gej#, m15
H1m~11v !

egj
.

We introduced here the notation
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f152~11v !224/gF11
@2~11v !2/g21#2

11v G1
4~d112g!

22g
@~11v !122/g21#@~11v !122/g212v#,

~C5!

f2521
1

~11v !2/g21
2

1

~11v !2/g
, f352

21v
11v

.

One can derive also a generalization of Eq.~3.12!,

q25E
2`

` 2na egjU dj

A~mf22a!22f3$m
2f112a@m1uyu2Uegj#%

.

w
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As before~see Sec. III A! we can divide the evolution into
three stages. Let us analyze the first stage. SinceU50 there,
the quantityH does not explicitly depend onj and therefore
its value ~which we designateH1) is conserved during the
first stage. Then from the relation~C4! we can expressm via
v as

m5
av2H1S46F1

S1
, ~C6!

F15AH1
2S312aH1S21a2v2. ~C7!

We introduced the shorthand notation

S15f112~11v !f21f3~11v !2, ~C8!

S25f11f21~11v !~f21f3!, ~C9!

S35f2
22f1f3 , ~C10!

S45f21~11v !f3 . ~C11!

Then we can derive an equation forv,

g21]jv5
6S1F1

aS21H1S37S4F1
[2G~v !. ~C12!

This equation is the direct generalization of Eq.~3.19!. To
ensure the finite value of the action~C3!, one should take the
lower signs in Eqs.~C6! and~C12!. A solution of Eq.~C12!
with the correct boundary condition is given by Eq.~3.20!,
whereG should be substituted from Eq.~C12!.

Let us establish the behavior ofG at smallv, which is
important for the description of the first stage. To do that,
should take into account the relations

f152223v1
8d24g2g2

g2
v2,

f2521v2
2

g
v2, f35221v2v2,

S15
8~d2g!

g2
v2, S25

8~d2g!

g2
v2,
e

S35
16~d2g!

g2
v2, S452

2

g
v2,

valid at v!1. Note that all the functionsSi have the homo-
geneous behavior proportional tov2 at smallv. Therefore,
starting from the relation~3.20!, we can find the same est
mates~3.24! and~3.26! for v* andv r with small corrections
of the order 1/d.

Next we should analyze the second stage and matc
with the first stage, that is, a repetition of the procedure
scribed in Appendix D. As a result we find the exponents

zn5
1

2
@a2Aa222agn14~d2g!n2#, ~C13!

zc5
a

2S 12A12
g2

4~d2g!
D . ~C14!

In the limit gd@1 we recover the previous results~3.30! and
~3.32!. To avoid a misunderstanding, let us stress that
expressions~C13! and~C14! cannot be used to establish 1/d
corrections to the exponents~3.30! and ~3.32! since contri-
butions of the same order, related to the triangular inequ
ties ~2.15! and fluctuations, are unknown.

APPENDIX D

In this appendix we present a consideration of the sec
stage and matching conditions for the instanton solution. T
procedure appears to depend strongly on the ordern of the
structure function. Therefore, we consider different ca
separately. The designations used below were introduce
Sec. III.

1. Intermediate tail

Let us first consider the case where the behavior of
function v(j) is monotonic during the whole first stage. A
was demonstrated in the main text, this case is realize
H1.Hc and the variablev is small at the end of the firs
stage. We will show that the variable remains small a
during the second stage, going to zero at the third sta
Therefore, the evolution ofv during the last substage of th
first stage and during the second and the third stages ca



n

e

th
nd

e

e

.

in

and
he
the

n.
ing

onic
ns

ept

the
ian

.
to
e

PRE 58 5791INSTANTON FOR THE KRAICHNAN PASSIVE SCALAR . . .
described in terms of the Hamiltonian~3.14!, where the con-
dition v!1 is utilized, which simplifies the analysis esse
tially.

In the limit v!1 we get from Eqs.~3.14! and ~3.15!

H52mv1
2~22g!

dg2
m2v22

uyu2

gD
R1

11gx8~R1!v.

~D1!

We see that the first two terms in the expression~D1! depend
only on mv. This is the reason why the equation for th
quantity

d~mv !

dj
5

uyu2

D
R1

11gx8~R1!v, ~D2!

that can be derived from Eqs.~D1! and~3.16! contains on the
right-hand side only the term proportional tox8(R1). The
term can be neglected if eitherR1!1 or R1@1, that is,
during the first and during the third stages. Therefore,
quantitymv is conserved there. Recall that due to the bou
ary condition,m50 at j→` and consequentlymv50 dur-
ing the third stage.

Integrating the relation~D2! from anyj corresponding to
the last substage of the first stage up to1`, we get the
integral relation

mv52
uyu2

D E dj R1
11gx8~R1!v, ~D3!

which is correct for the first stage ifv!1. It is instructive to
compare Eq.~D3! with the relation

q252
2n

gDE dj R1
11gx8~R1!v, ~D4!

which can be obtained from Eq.~3.12! at v!1. Recalling
also the relationy52 in/q @Eq. ~2.21!#, we get

mv5
gn

2
. ~D5!

Substituting Eq.~D5! into Eq. ~D1! and neglecting the term
with x8, we find that the value of the Hamiltonian during th
first stage is

H152
gn

2
1

22g

2d
n2. ~D6!

During the second stagemv diminishes fromgn/2 to
zero. Therefore, the equation

d ln v
dj

5gS 211
4~22g!

dg2
mv D

shows that the quantityv does not vary essentially during th
second stage. Then we obtain from Eqs.~D4! and~2.21! the
estimates

q2;v* Lg
nP2

gD
, uyu2;

ngD

LgP2v*
. ~D7!
-

e
-

Recall thatv* is the value ofv at the end of the first stage
Substituting Eqs.~3.23! and ~D6! into Eq. ~3.18! we get

G5v~12n/nc!, ~D8!

wherenc is defined by Eq.~3.28!. Recall that the monotonic
behavior ofv implies G.0 and therefore the expression
Eq. ~D8! is correct ifn,nc . This means that forn.nc the
instantonic solution of the considered type does not exist
we should look for another possibility. We postpone t
problem to the next subsection and continue to analyze
monotonicv regardingn,nc .

Substituting Eq.~D6! into Eq. ~3.24! we get

ln
1

v*
5~12n/nc!g ln

L

r
. ~D9!

Next we should find the leading contribution to the actio
This contribution is made mainly by the first stage produc
a large logarithm. Therefore, we can write, using Eq.~3.13!,

iI'g21E
v*

1

dv S m1
H1

G D .

Substituting here Eqs.~D5!, ~D6!, and~D8!, we find with the
same logarithmic accuracy

iI52
~22g!n2

2d
ln

L

r
. ~D10!

Finally, we can determine the structure functionsSn @Eq.
~1.2# in accordance with the formula~3.2!. Collecting Eqs.
~D7!, ~D9!, and~D10! we obtain the expressions~3.29! and
~3.30!.

2. Remote tail

Let us proceed to discuss the character of the instant
solution atn.nc . We can solve the corresponding equatio
in two limiting cases:n@nc andn2nc!nc . The latter case
is considered in Appendix D 4. In this subsection we acc
n@nc ; the inequality ensures alsov* @1 ~recall thatv* is
the value ofv at the end of the first stage!. Due to the
conditionv* @1, the last substage of the first stage and
second stage can be examined in terms of the Hamilton

H52mv1
m2

2d
v1

uyu2

D
R1

g @x~R1!2x~R1v1/g!#,

~D11!

which follows from Eqs.~3.11!, ~3.14!, and ~3.15! at v@1.
At the end of the first stageR2;L, whereasR1'R2 /v

*
1/g

!L. The second of Eqs.~3.16! shows thatm, which is equal
to zero atR2.L, varies essentially atR2;L. To find the
value ofm at R2,L, we will use the relation

d

dj
@~H1mv !R1

2g#5
uyu2

D
x8~R1!R1 , ~D12!

which follows from Eqs.~3.16! and ~D11!. Actually Eq.
~D12! is the equation form1 that can be obtained from Eqs
~3.6!, ~3.7!, and ~3.9! under the same conditions that led
Eq. ~D11!. SinceR1!R2;L during the last substage of th
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first stage and the second stage, the right-hand side of
~D12! can be neglected and we get a conservation law
(H1mv)R1

2g . Equating the values of that quantity atR2

,L and atR2.L, we find that at the end of the first stag

m* v* ;Aduyu2P2

D
Lg. ~D13!

Now let us return to the relation~3.4!. Since R2;L
@R1 at the end of the first stage the main contribution to
integral~3.4! is made when alreadyR2.L andR1 increases
to L. Using Eqs.~3.4!, ~3.10!, and~2.21! we get

q2;n
P2

gD
Lg, uyu2;n

gD

P2Lg
. ~D14!

Substituting the expression~D14! for uyu2 into Eq.~D13!, we
conclude thatm* v* increases withn. In addition, at
R2,L the Hamiltonian~D11! should be equal toH1'Hc
@Eq. ~3.22!#, that is,

2m* v* 1
m2

2d
v* 'Hc .

At v* @1 the relation leads to

m* '2d, v* ;Agn/d. ~D15!

Actually, m'2d during the whole last substage wherev
@1. Deriving the expression~D15! for v* , we used the
estimates~D13! and ~D14!.

Now we can turn to the calculation of the effective acti
~3.13!. As before, the main contribution to the action is ma
by the first stage. Hence

iI52
1

gE S m dv1
H1

G
dv D . ~D16!

Moreover, only the contribution related to the vicinity of th
reverse point is relevant. Using the relation~3.21! we obtain

iI'Hcln
L

r
. ~D17!

Here we substitutedH1'Hc and took into account thatm
has no singular denominator, which is clear from the relat
~3.17!. Finally, we can determine the structure functionsSn
@Eq. ~1.2!# in accordance with Eq.~3.2!. Collecting Eqs.
~D14! and ~D17!, we obtain the expression~3.33! of the
main text.

The expression~D15! shows that indeedv* @1 ~which is
the applicability condition of the above consideration! at n
@nc if there are no additional small parameters. The n
subsection is devoted to special situations appearing in
presence of such parameters.

3. Special cases

In this subsection we treat three special cases that
realized atn.nc if g!1, 22g!1, or n is extremely large.
q.
r

e

n

t
he

re

The general picture given in Appendix D 2 does not ess
tially change, but particular answers should be slightly c
rected.

The caseg!1 needs special consideration since, as f
lows from Eq.~D15!, the conditionv* @1 is violated atn
;d/g@nc;dg. Therefore, an intermediate region exists
nc!n!d/g, whereg!v* !1. Then we get from Eq.~3.14!

H52mv1
m2

2d
1

uyu2

D
R1

g @x~R1!2x~R2!#, ~D18!

where

R25R1exp~v/g!. ~D19!

Equations~3.16! now read

dv
dj

52gv1g
m

d
, ~D20!

dm

dj
5gm1

uyu2

D
R1

g R2x8~R2!. ~D21!

At the end of the first stageR2;L. As follows from the
relation ~D19!, due tov* @g, the estimateR1!L is valid.
Therefore, the integral~3.4! for q2 is determined by the time
interval between the moments whenR1 andR2 go through
L. We can again pass to integrating overR1 in accordance
with Eq. ~3.10!. Though R1!L at R2;L, gR1

g 'R2
g (1

2v) due to the smallness ofg. Therefore, we return to the
estimates~D7!. Next we can estimatem* from Eq. ~D21!
where the termgm is dropped. SinceR1

g ;Lg at R2;L,
integrating overj we obtain from Eq.~D21!

m* ;
uyu2

D
LgP2 . ~D22!

To justify the estimate~D22!, one should check thatv does
not vary essentially in the region whereR2;L. Using Eq.
~D20!, we obtain that the condition is satisfied. Substituti
formulas ~D7! into Eq. ~D22!, we obtain the previous rela
tion m* v* ;gn@uHcu. Equating then the Hamiltonian
~D18! to Hc at v5v* we get

m* ;Adgn, v* ;Agn

d
. ~D23!

The estimate~D23! for v* surprisingly coincides with Eq.
~D15!. Next we obtain from Eq.~D7!

q2;A n

nc
Lg

nP2

D
. ~D24!

Therefore, the expression~3.33! should be corrected and w
get

Sn;SA n

nc

P2C3

D
LgD n/2S r

L D zc

, ~D25!

whereC3 is a nonuniversal parameter of order unity andzc
is defined by Eq.~3.32!.
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Some peculiarities appear also at 22g!1. In this case
the function~3.15! can be approximated as

f'2dv ln v

if v@1 but (22g)lnv!1. Then we obtain from Eq.~3.14!

H52mv1
22g

2d
v ln vm21

uyu2

D
R1

g @x~R1!2x~R1v1/g!#.

~D26!

The expression~D26! has the same structure as Eq.~D11!
except for the logarithmic factor. Taking into accountv
@1, we conclude that the Hamiltonian~D26! leads to the
conservation law~D12! which is satisfied with the same ac
curacy 1/v as previously. Therefore, we get instead of E
~D13!

m* v* ;A duyu2P2

D~22g!ln v*
Lg;A nd

~22g!ln v*
,

~D27!

where we used Eq.~D14!; its validity accounts for the in-
equalityv@1. One can check that the main contribution toH
in Eq. ~D26! at the end of the first stage is made by2mv.
Equating2m* v* to Hc we get

ln v* ;
n

nc
. ~D28!

Now we obtain the conditionn!nc /(22g), under which
the regime under consideration is realized. Sincev@1 in the
regime, we have the same expression~D14! for q and, con-
sequently, the same estimate~3.33! for the structure func-
tions.

We finish this subsection with a discussion concern
extremely largen. In accordance with the estimates~D15!,
v* increases with increasingn. Therefore, the last substag
of the first stage wherev@1 starts to play an essential rol
First of all we should correct Eq.~3.21!, returning to Eq.
~3.20!. If v5v* there, thenv* R1

g on the right-hand side o
the relation can be substituted byLg. The contribution to the
integral on the left-hand side of Eq.~3.21! associated with
the last substage~when v increases from 1 tov* ) can be
found by substitutingG(x)'2x there. Thus the substag
makes the additional logarithmic contribution to the integr
Taking the contribution into account, we get instead of E
~3.27!

A d

8~22g!

2p

A~Hc2H1!
5g ln

L

r
22 lnv* . ~D29!

There appears also an analogous correction to the expre
~D17!. Calculating the action~D16! we get

iI'HcS ln
L

r
22

ln v*
g D . ~D30!
.

g

l.
.

ion

Here we neglected the term originated from*m dv since
using Eq.~D15! the term can be estimated asAn/gd and is
consequently negligible in comparison to the terms;n en-
tering Sn via q. Substituting the expression~D30! into Eq.
~3.2!, we conclude that the correction related to the last c
tribution in Eq.~D30! can be neglected in comparison to th
strongn dependence ofqn. Nevertheless, the presence of t
additional term on the right-hand side of Eq.~D29! shows
that our approach is broken at 2lnv*;gln(L/r) since Hc
2H1 ceases to be small there. Using the estimates~D15!, we
arrive at the condition~3.35!, which is the applicability con-
dition of our approach. Note that at ln(n/d)*g ln(L/r) the
scaling behavior ofSn is destroyed.

4. Instanton near critical order

Here we will consider the case whenn is close to the
critical value ~3.28!: un2ncu!nc . Then v* !1 and upon
examining the last substage of the first stage and of the
ond stage we can use the Hamiltonian, expanded over s
v.

If n,nc then we can take the Hamiltonian~D1!. The only
peculiarity of the consideration nearnc is that the logarith-
mic contributions to the effective action~3.13! and to the
left-hand side of the integral~3.20! depend onn2nc . In-
deed, the expression~3.25! shows thatG(x) is a linear func-
tion of x only in the restricted interval

22g

2dg
uHc2H1u.v.v* .

Just the interval determines the value of the logarithm. T
means that we should substitute in the expressions~D9! and
~D10!

ln
1

v*
→ ln

v* nc
2

~n2nc!
2

.

The substitution does not change the final answer~D10! for
the action but influences the value ofq2 because of Eq.
~D7!. Taking the fact into account we get the express
~3.36! that replace Eq.~3.29!.

It is clear that atn→nc the differencen2nc starts to
compete withr /L, which destroys our construction. Let u
estimate the corresponding value ofnc2n regarding n
,nc . It follows from the asymptote~3.25! that our consid-
eration is correct if (Hc2H1)@dgv* /(22g). Expressing
in the inequalityv* via r /L from Eq. ~3.24! we obtain the
criterion ~3.37!. Note that the criterion implies the inequalit

g ln
L

r
@1,

which should be assumed for our treatment to be corr
Otherwise special consideration is needed.

Let us now proceed to the casen.nc . We should take
into account the next term of the expansion ofH over v in
comparison with Eq.~D1!, which should correct the value
~D6! of H1 since we know thatH1 is equal toHc . The
corresponding expression is
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H52mv1
2~22g!

dg2 S 12
42g

2g
v Dm2v2

1
uyu2

D
R1

g @x~R1!2x~R2!#, ~D31!

where the differencex(R1)2x(R2) should be expanded u
to second order overv. Equations~3.16! with the Hamil-
tonian ~D31! lead to

1

g

dv
dj

52v1mv2~a12a2v !, ~D32!

1

g

d

dj
~mv !5

1

2
a2m2v31

uyu2

D
R1

g11x8~R2!v, ~D33!

a15
4~22g!

dg2
, a25

2~42g!~22g!

dg2
. ~D34!

Equating the Hamiltonian~D31! to the value~3.22!, we get

mv'
gnc

2
, ~D35!

at the end of the first stage. Note that due tov* !1, we can
use the estimates~D7!.

Our next aim is to estimatev* in terms ofn2nc . To do
so we will use the identitydH/dj5]H/]j that is correct for
any canonical system. Let us integrate the relation over
second stage. SinceH5H1 at the first stage andH50 at the
end of the second stage we obtain

2H15
uyu2

D E dj $gR1
g @x~R1!2x~R2!#1R1

g @R1x8~R1!

2R2x8~R2!#%. ~D36!

Expanding the right-hand side of the relation~D36! up to
second order overv, integrating by parts~to remove high
derivatives ofx), and using Eqs.~3.12!, ~D32!, ~D33!, and
n

v

e

~2.21!, one can obtain the expression

2H15
gn

2 S 12
gf1n

4 D2
ga1

2

2
~n2nc!

uyu2

D

3E dj R1
11gx8~R1!mv3

2
uyu2a2

D E dj R1
11gx8~R1!mv3

2
guyu2

2D
a1a2E dj R1

11gx8~R1!vE
j

`

dj̃ m2v3.

~D37!

The first term on the right-hand side of Eq.~D37! reproduces
the previous result~D6! and the other terms are small co
rections proportional tov* .

We know that in the main approximation overr /L we can
substituteH15Hc . Regardingn2nc!nc , we neglect the
second term on the right-hand side of Eq.~D37!. The last
two terms on the right-hand side of Eq.~D37! can be esti-
mated usingm* v* ;gnc , x;P2 , R1;L, and the estima-
tion ~D7! for uyu2. Combining all together we get

v* ;g
~n2nc!

2

nc
2

. ~D38!

Let us stress that due toa2.0 the last two terms on the
right-hand side of Eq.~D37! are positive ifx(R) is a mono-
tonic function, which is a reasonable condition. Therefore
solution of Eq.~D37! for v* , determined by the estimat
~D38!, really exists. We conclude that there is an instanto
solution with nonmonotonic behavior ofv at any n2nc
!nc .

The last assertion should be corrected since it is true o
if L/r→`. At finite L/r there is a narrow region of very
small n2nc where our scheme does not work. To establ
the corresponding criterion let us recall that our consid
ation is valid if v r!v* . It follows from Eq. ~3.27! that v r
;1/g ln2(L/r). Then, from the formula~D38! we get the in-
equality ~3.37!.

Finally, we can determine the structure functionsSn @Eq.
~1.2!# in accordance with Eq.~3.2!. Collecting Eqs.~D7!,
~D17!, and~D38!, we obtain the formula~3.36!.
ys.
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