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Instanton for the Kraichnan passive scalar problem
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We consider high-order correlation functions of the passive scalar in the Kraichnan model. Using the
instanton formalism we find the scaling exponefjof the structure function§,, for n>1 under the addi-
tional conditiond{,>1 (whered is the dimensionality of spageAt n<n. [wheren.=d{,/2(2—{,)] the
exponents aré,=({,/4)(2n—n?/n.), while atn>n, they aren independent?,= {,n./4. We also estimate
n-dependent factors i8,, particularly their behavior at close ton.. [S1063-651X98)04011-3

PACS numbses): 47.27.Ak, 05.20-y, 05.40+j, 47.10+¢g

INTRODUCTION from above, which does not allow one to imagine the whole
dependence of,, on n. For that it would be enough to get
Anomalous scaling is probably the central problem of thethe asymptotic behavior af, atn>1. There have been sev-
theory of turbulence. In 1941 Kolmogorov formulated his eral attempts to find the scaling of the correlation functions
famous theory of developed turbuler{dd, where the scaling for largern. In the the work by Kraichnaf26] a closure was
behavior of different correlation functions of the turbulent assumed enabling one to firdgl for any n. An alternative
velocity was predicted. Experimentally one observes deviascheme was proposed ia7]. An attempt to solve the prob-
tions from the scaling exponents, proposed by Kolmogoroyem at largen was made in28], where ann-independent
[2—4]. It is recognized that the deviations are related to rareisymptotic behavior was found.
strong fluctuations making the main contribution into the |n the present work we develop a technique based on the
correlation function$5-7]. This phenomenon, which is usu- path-integral representation of the dynamical correlation
ally called intermittency, is the most striking peculiarity of functions of classical fieldg29—31]. We use an idea, formu-
developed turbulence. lated in[32], that is related to the possibility of exploiting the
One of the classical objects in the theory of turbulence issaddle-point approximation in the path integral at large
a passive scalar advected by a fluid. The role of the passivehe saddle-point conditions are integro-differential equations
scalar can be played by temperature or the density of pollutdescribing an object that, in analogy to the quantum field
ants. Correlation functions of the scalar in a turbulent f|0Wtheory, we call an instanton. The instantonic method was
possess a scaling behavior that was established by Obukhewteady successfully used in some contexts. Results concern-
[8] and Corrsir[9] in the frame of a theory analogous to that ing Burgers turbulence, conventional Navier-Stokes turbu-
of Kolmogorov. Intermittency enforces deviations from the |ence, and modifications of the Kraichnan model were ob-
Obukhov-Corrsin exponents that appear to be even strongésined with the help of this method in Ref83-36. The
than the deviations from the Kolmogorov exponents for theformalism presented in this paper enables one to find corre-
correlation functions of the velocity10-13. lation functions of the passive scalar for arbitrary1 pro-
Unfortunately, a consistent theory of turbulence describvided d¢,>1.
ing anomalous scaling has not been constructed yet. This The paper is organized as follows. In Sec. | we formulate
accounts for the difficulties associated with the strong couthe Kraichnan model, introduce notation, and write down the
pling inherent to developed turbulence. This is the reason fostandard path integral representation for the correlation func-
attempts to examine the intermittency phenomenon in thgions. This basic representation turns out to be unsuitable for
framework of different simplified models. The most popularthe saddle-point approximation; therefore, we reformulate
model used for this purpose is Kraichnan's model of passivghe problem in Sec. Il. Passing to new variables that are
scalar advectiorj14], where the advecting velocity is be- | agrangian separations, we get a path integral that already
lieved to be short correlated in time and have a Gaussiagdmits the use of the saddle-point approximation. In Sec. IlI
distribution. That allows one to examine the statistics of theye consider the instantonic equations for the case of the
passive scalar in more detail. structure functions. We solve these equations in the limit
The scalar in the Kraichnan model exhibits strong inter-qz,>1, which enables us to find the anomalous scaling and
mittency even if it is absent in the advecting velocity field. estimate then dependence 0§,. The main results of the
This was proved both theoreticall$5-22 and numerically  work are presented in Sec. Ill C and discussed in Conclu-

[23-25. In the theoretical works the equation for thpoint  sjon. Details of calculations are given in Appendixes.
correlation functionF,, was solved assuming that different

parameters, such d@s, 2— {,, ord™!, are smallrecall that

{, is the exponent of the second-order correlation function of
the passive scalar artlis the dimensionality of spageThe
order of the correlation functions that can be examined in the Advection of a passive scala& by a velocity fieldv is
framework of the methods of the noted papers is boundedescribed by the equation

I. KRAICHNAN MODEL
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8,0+vV 06— kV20= ¢, (1.1 The guantity), is anr-independent constant that is the main
contribution to the velocity correlation function on scales

wherex is the diffusion coefficient ang is the source of the less than the velocity pumping length . Nevertheless, be-
passive scala¢say, if & corresponds to fluctuations of tem- sides),, we should also keep a smaltiependent correction
perature, therp represents the power of heateds a turbu- K sinceV, corresponds to advection homogeneous in space
lent flow, v is a random function of time and space coordi- and therefore does not contribute to simultaneous correlation
nates. The source is also assumed to be a random function.functions of 6.
Then passive scalar correlation functions are determined by The velocity correlation function is assumed to possess
the statistics ob and¢. Usually, one is interested in simul- some scaling properties, namelg(r)=r?~?, where the ex-
taneous correlation functions,=(6(ry)--- 6(r,)) since a ponenty characterizes the roughening degree of the velocity
large-scale velocity destroys temporal correlations in the Eufield. The field is smooth in space at=0 and is extremely
lerian frame, whereas simultaneous objects are not influirregular aty=2. We will treat an arbitraryy satisfying the

enced by it. inequality 0<y<2. The tensorial structure df,; is deter-
It is convenient to examine the anomalous scaling inmined by the incompressibility condition div=0, implied
terms of the structure functions in the Kraichnan model
Sa(r)y={|6(r/2)— 6(—rI2)|"). (1.2

D _[2-y , )
Kaﬂ(r)z—dr v —d_l(r Bap—Tal g) T10,5|. (1.6)
One expects a universal behavior of the structure functions in

the convective inte.rvallo.f scaleg<<r<L, wherery .is the  Hered is the dimensionality of space aridl is a constant
scale where the diffusivity becomes relevant dnds the  cparacterizing the strength of velocity fluctuations. One as-
correlation length of the scalar sourge Namely, one ob- g mes that the fluctuations are strong enough to ensure the
serves a scaling dependenceron large value of the Reet number, that is,

Sn(r)eerén, 1.3 DL2 "> k. 1.7

In the frame of the Obukhov theor}8,9] {,=(n/2){>.  The inequality(1.7) ensures the existence of the convective
Therefore, the differences(2){>— ¢, which are usually jnteryal of scales since it can be rewrittenrgseL, wherer 4
called anomalous exponents, characterize the anomaloysihe diffusive length

scaling. One can write an estimate
ra-?~«lD. (1.8

L\ (M=,
) , (1.4

sn<r>~An[sz<r>]“’2(;

The assumption of the Gaussian nature and zero correla-
tion time for the field and ¢ allows one to derive a closed
whereA,, is ann-dependent factor. Note that E(L.4) im-  partial differential equation for thexth order correlation
plies that the structure functions in the convective interval ddfunction F,, of 6 [14,37,17. For the simultaneous pair cor-
not depend on the diffusion length,. The intermittency relation function F,(r1,)={6(t,r;)6(t,r,)) one can solve
leads to the conclusion that values of the structure functionghe equation and find the explicit expression For. In the
should be much larger than their naive Obukhov estimationgonvective interva[14]

[7]. Therefore, 0/2)¢,—{,>0 and we conclude that these
) . =
are the anomalous exponents that reflect the intermittency. Sy(r)=2[F(0)—Fy(r)]~ Bzry_ (1.9

A. Formulation of the problem
Comparing Eq(1.9 with Eg. (1.3), one concludes that the

: dln the dKr?chn;n medelt.bOtgb and|¢ ta:je_asﬂs;rgziéo dt: exponenty introduced by Eq(1.6) directly determines the
independent random functiona, corretated In scaling of the second-order structure functign- y.

scribed by Gaussian statistics homogeneous in space. There'However, forn>2 the equations foF , are too compli-

fore, stat|st|callpropert|e§ of the f_|elds are entirely characteréated to be integrated exactly. ln6—19 the equations were
ized by the pair correlation functions

analyzed in the limits 2 y<1 anddy>1, where the statis-

((ty,r11) b(t2,2))=x(r12)8(ti—t5), x(0)=P,, tics of the passive scalar is close to Gaussian. The analysis
led to an anomalous scaling that can be expressed in terms of
(Va(t1, 1)V a(t2,12) ) = Vap(r1—12) 8t —t,). the exponentg,, of the structure functionél.2) and (1.3),
Here x(r) is a smooth function decaying on the scale ¢ :Q_ 2—y n(n—2) (1.10
which is the pumping length. The constd has the mean- "2 2(d+2) ' ’

ing of the pumping rate o®?. The tensorV,g4(r) has a . . o
characteristic scale, , which has the meaning of the pump- This expression covers both limit cases-2<1 anddy

ing length of the velocity. We will assume that>L. Since  >1. The first term on the right-hand side of E4.10 rep-
r<L in the convective interval, we will need,; only atr resents the normal scaling, whereas the second one is just the

<L,, where one can write anomalous scaling exponent. The calculations leading to Eq.
(1.10 are correct if the anomalous contribution is much
Vap(1) =Vobup— Kap(r). (1.5  smaller than the normal one, which implies the inequality



5778 E. BALKOVSKY AND V. LEBEDEV PRE 58

<0 (1.19) Pﬁ-jwﬂ —iy o (1.16
<5 : (9)=] s_exd—iyd)2[ys(r)]. :

Below we will develop a different approach to the problem.Moments ofd are then expressed as

It will allow us to find the exponentg, [Eqg. (1.3)] of the

structure correlation functiond.2) for any ordem>1 under 9lM = J'w do | 9P 11
the same additional conditioshy>1 as in[17,18. 917 — ["P(D). (.19

We will be interested in the high-order correlation func-
tions of ¥ or, in other words, we consider the limit>1.
Generally, the statistics of classical fields in the presencehis is equivalent to examining the largetail of the PDF
of random forces can be examined with the hE|p of the flel(:tll@ One could exped:'[SZ:l that the tail can be calculated
technique formulated i129-31. In the framework of the i the saddle-point approximation since there is a large pa-
technique, correlation functions are calculated as path intgqgmeterd in the corresponding path integral. Unfortunately,
grals with the weight exp), whereZ is the effective action  direct application of the method to the integfal16) or to
related to dynamical equations for the fields. For the passivehe momentg1.17) does not lead to success.
scalar in the Kraichnan model the effective action is To recognize the reason, let us consider the transforma-
tion of the variable$32] (see alsd35])

B. Path integral

i%:iJ dtdr[pd;0+pvV 0+ «VpV o] voXv, poXp, t—X"M, yoXy, KXk
One can check that under this transformation all the terms in
the square brackets on the right-hand side of @dl4) ac-
quire the factorX, which means that in the saddle-point ap-
proximation In Z(yB) 1=y f(y/ k) with some unknown func-
tion f. On the other hand, we expect that correlation
functions of the scalar itselbut not of its gradient, for ex-
ample do not depend on the diffusivity and the results of the
Jyorks [15-19,21,22,3F confirm the expectation. Then, at
small k the functionf remains ax-independent constant and
we obtain

1
- 5[ dtdrydrox(|ry—ra|)p(t,r)p(t,ry),

(1.12

wherep is an auxiliary field conjugated t6. The first term
in the effective action(1.12) is directly related to the left-
hand side of Eq(1.1). The quadratic in the term in Eq.
(1.12 appears as a result of averaging over the statistics
the pumpinge.

Simultaneous correlation functions @ can be repre-

sented as functional derivatives of the generating functional In 2(yB)=|y| (1.18

>, (1.13 Unfortunately, Eq(1.18 does not help to restof@(}) since
after substituting it into Eq(1.16 we realize that the char-

) . acteristic value ofy in the integral can be estimated gs

where angular brackets designate averaging over the statis- 91 Therefore, at larged the main contribution to the

Z()\)=<exp{i J drA(r)6(t=0,)

erating functional can be rewritten as the path integral not work.
We conclude that the naive instantonic approach to the
20\ = | Do Do Dv exd — Flv)+iT. _prot_)lem_ fal_ls. The reason is that f(_)r t_he instanton the veloc-
) f pre F{ (®) o ity field is fixed (does not fluctuaein time and space. Ob-

viously, a saddle-point solution is anisotropic because of the
+if dr )\(r)g(tzo'r)} (1.14 incompressibility condition diw =0. Fluctuations related to
smooth variations of the anisotropy axis in time and space
) . L are strong and destroy the saddle-point approximation for the
Here F(v) determines the statistics of the velocity field. tail of the PDFP(9) or for the high moments of. Thus we
Since we assume the Gaussian nature of the statisied,  ghoyig transform the problem to more adequate variables,
is a functional of second order overwith the kernel deter- \;hare fluctuations of the velocity are partly taken into ac-
mined by the pair correlation functidd.5). Knowing Z(\),  ¢ount. This is the only chance to construct an instanton with

one can restore the probability distribution functi®DF) of \\eak fluctuations on its background. This is the goal of the
6. It is convenient to treat the PDF of a particular object axt section.

f}:j dr B(r)6(t=0y), (1.19 Il. LAGRANGE FORMULATION

As we mentioned above, the diffusivity does not enter
with a given functionB(r). For example, the set of the struc- the result for the structure functions. Therefore, we will as-
ture functions(1.2) can be assembled into the PDF of the sumex=0 in all the following calculations. However, one
scalar difference in two pointg(r/2)— 6(—r/2), which is  should be careful since in this case it is impossible to deal
the object(1.15 with B(r;)=48(r,—r/2)— 8(r,+r/2). The with point objects. To provide a regularization, we should
PDF of 1 is written as assume that the characteristic scales of the fungiiam Eq.
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(1.19 are larger tharry. In addition, the scales are to be ferences(2.4). Therefore, instead of averaging over the sta-
much smaller thath since we are going to examine correla- tistics ofv, one could find the answer by averaging over the
tion functions in the convective interval. statistics of the Lagrangian separatidts. Due to zero cor-

In the diffusionless case the left-hand side of EfJd) relation time of the velocity field, the statistical properties of
describes the field moving together with the fluid. Then it the fieldR,, appear to be relatively simple.
is natural to pass into the Lagrangian frame where the pro- To establish the statistics &;, we start from the relation
cess is trivial. For that purpose we introduce Lagrangian tra- B 72
jectorieso(t) that obey the equation ¥ raRY= {1=RY; *Rian(v14—v24), (2.9

dio=v(t,0). (2.1 following from Egs.(2.1) and(2.4). As shown in Appendix ,

_ _ _ . . the average value dof,, is nonzero:
We will label the trajectories by the positions of fluid par-

ticles att=0: o(t=0)=r. Equation(1.1) (wherex is omit- ({19=—-D. (2.9
ted) can easily be solved in terms of the Lagrangian trajec-

tories Next, exploiting the expressiofi.5) for the velocity corre-

lation function, one can find the irreducible pair correlation
0 function
won)= [ dtgrten) 22
2

Since we are interested in the fiefdat t=0, due to causal- (1t dad12))) = —5 Quaad(ti—tz).  (2.10

ity, the integration is performed over negative time. There-

fore, Eq.(2.1) should be solved backward in time. The explicit expression for the functid@ is rather cumber-

A simultaneousth-order correlation function of can be  ggme:
written as the product afi integrals(2.2), averaged over the

statistics ofv and ¢. In this representation, averaging over d+1—vy 2 ” . ”
the pumping is very simple. For example, the two-point cor- Q12,34= mR Ris “(Ro3 7+ R, "—Ri3 "= Ry, ")
relation function is
0 X(R2+R?, R2,) — 277 Rl 2RY,
F2=f dt(x(R12)), , (2.3 23 8(d—1)
1 2 2 2 2 2 2
RiAt)=R(t,r1,r,)=|o(t,r))—o(t,ry)|. (2.4 X R_y(R12+ Ris~ R23) (Riz+ R3,— Ry

13
The angular brackets), in Eg. (2.3) denote averaging over 1
the statistics ofv only since the statistics o is already + _y(R§2+ R2,— R2,)(R3,+R2,— R2,)
accounted for there. Similar formulas can be written for cor- R1s

relation functions of higher orders. Once this is done, one

can assemble them into the generating functighal3
+ R_(R 2+ Ri— RE) (RS, +RE,~R%y

1 14
Z()\)=<exp[—§f dtdrldrzx(Rlz))\l)\2]> , (2.5 1
0 + — (Rl Ry~ RI)(R+ Ry~ R 1. (211
where\; ,=\(ry ). Calculating the moments of the object R

1.19 i ith E A 1.1
(1.19 in accordance with Bqs1.16 and(1.17) we get It can be found from the definition df;, [Eq. (2.8)], formula

N dy do _ (1.6), and relations such as
191~ [ S (exe— A =iy o+ ninl o)),

(2.6
Ry RlS_ (R12+R 15— R5),

y2
fA:EJ' dtdrydry x(Ri2) B(r1) B(r2). 2.7

At this point, we would like to stress the close connection Riz R34:§(R§4+ RSs— Ris—R2d).
between the statistics of the passive scalar and that of La-
grangian trajectoriegt0], which can be seen from E(R.5). In the spirit of the conventional proceduf29—31], one
can assert that any average over the statistid®;gfcan be
A. Statistics of Lagrangian separations found as the path integral ovBy, and over an auxiliary field

Equations(2.5) and (2.6) show that the correlation func- M=m(t,r1,r2) with the weight

tions we are interested in are expressed via the average of
exp(—F,) over the velocity. Note tha#, [Eq. (2.7)] de- <ex+j dtdrydry(mypy 1oRY,— m12§12)}>
pends only on the absolute valuBsg,(t) of Lagrangian dif-

v
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where angular brackets mean averaging over the statistics
the velocity. Since/q, is & correlated in time, the average
can be expressed in terms of E¢&.9) and(2.10 only. The
result is expiZg), where

0
iIR=if dtf drydromyy( ¥~ 19;R],+D)

D ro

g %dtj drydrydradry Qq2.34M15M3y.

(2.12

Now, instead of Eq(2.6) we can write

(|9]")= —dydﬁ DR Dm dZr~Fr-iyd+nin|d]
2
(2.13

The integration in Eq(2.13 is performed over functions
of t, ry, andr, with some boundary conditions imposed on
them. The condition for the fiel&,, follows from o(0)=r
and reads

Ria(t=0)=|r;—ry|. (2.14
The boundary condition for the fieldh;, should bem,
(—=)=0 since we deal with free integration oy, in the
remote past. Note that due to the definiti@4), the trian-
gular inequalities

Riot Ras>Ruya, (2.19
should be satisfied for any three points. Actually, the in-
equalities are constraints that should be imposed on the fie
R;, when integrating in Eq2.13.

B. General instantonic equations

In the preceding subsection we derive a form@4.3 for
(|9|"). Its calculation is equivalent to solving some nonlin-
ear field theory. It looks infeasible to perform this task. We
are going to calculate the integré.13 in the saddle-point
approximation regarding the numberarge enough. To be
consistent, when doing the procedure one should rememb
about the constraint®.15. Unfortunately, it is very hard to
take them into account explicitly. We will ignore the con-
straints, which is correct under the following conditions.
First, the inequalitie$2.15 should be valid in the instantonic
solution. Second, fluctuations on the background of the in
stanton should be weahis is also the applicability condi-
tion of the instantonic formalism its¢lfWe argue in Appen-
dixes B 1 and B 2 that those conditions are satisfied if

(2.19

Note also that for the conditiof2.16) fluctuations of a La-
grangian separation near its average value are \igssk Ap-
pendix A2. The inequality(2.16) will be implied below.

Thus we obtain from the integrdR.13 in the saddle-
point approximation

dy>1.

(|9 ~expiZg— F—iy O +nIn|d|)|ing.  (2.17)
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bfere solutions of the instantonic equations should be substi-
tuted, which are extremum conditions for the argument of
the exponent on the right-hand side of E2.13. Variation
overm, andR;, gives the following instantonic equations

L D
i(y latRZﬁ‘D):ZEf drgdry Qo 34m34, (2.18

D 0
iRY, Loymy+ Ef drsdr, ( ZQ;ZA'

3
mqom
f9R12 121134

dQ13, y?
+4 aF\ia 24m13m24] =T oX (R B(r1) B(r3).
12
(2.19
The extremum conditions overand ¥ read
o=iy [ dtdndr, xRBIVAML), (220
iy=n/d9. (2.21

Note that only Egs(2.18 and (2.19 are true dynamical
equations, carrying the information about the dynamics of
the flow, whereas Eq$2.20 and(2.21) are constraints im-
posed on the instantonic solution. One needs to add to Egs.
(2.18 and (2.19 some boundary conditions. The value of
the fieldR,, is fixed att=0 by Eq.(2.14). As for the field
m,,, we already noted that it should tend to zero wihen
—o. It can be understood as the extremum condition that
@ppears after variation of the effective action over the bound-
ary value ofRy, in the remote past.

One can easily establish the asymptotic behavidRgfat
|t|—co. There the fieldR;, grows and loses its dependence
onry,. The fieldmy, tends to its “vacuum” zero value at
|t| —o. Therefore, at largdt| the term withmy, in Eq.
(2.18 can be omitted and we find

R7~4Dlt. (2.22

er
The expressioii2.22) is nothing but the Richardson law for
divergence of Lagrangian trajectorig8]. Let us stress that
now it holds on the classicémean-field level, without tak-
ing into account fluctuations on the background of the instan-
ton. To clarify this point, notice that if the velocity field is a
deterministic function of time and spaas it is for the naive
instanton discussed abgyé¢hen the Richardson law cannot
be valid for all the Lagrangian trajectories. In our instanton
we get rid of the velocity field that resulted in the emergence
of the Richardson law. Note that the triangle inequalities
(2.15 are obviously satisfied both fof2.14 and for the
asymptotic behavio(2.22).

The expression for the action appearing in Ej13 is

iIEiIR_]:)\:if d tdrydr,y = 'm0 R},—E,
(2.23
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y? _ Here 8, (r) is the function with the width\ ~1>r 4 satisfying
E= 7f drydrox(R12) B(r1) B(rz) —iD f drydromg; the conditionfdr 6, (r) =1, which can be called a smearéd
function. Then we can write
D .
+ Ef dry drodradrsQaz 34M1oMay. (2.249 Sh=(| 9" ~exp(iZ—n+nIn[8)ling, (3.2

where we used Eq2.17) and substituted Eq2.21).
We see from Eq(2.23 that the quantityE plays the role of
the Hamiltonian function of the system, while Eq2.18 A. Reduction
and (2.19 are canonical equations corresponding to the
Hamiltonian function. Sinc& does not explicitly depend on
time t, its value(which can be called energys conserved.
Actually, the energy is zero on the instantonic solution sinc
att— —o we havem;,—0 andR;,—2. Note that since the
Hamiltonian(2.24) explicitly depends on the coordinates via im,
B, there is no “momentum” conservation law. mlzzT[ Sp

Before proceeding to the solution of the instanton equa-

Now we turn to the instantonic equatiori2.18 and
(2.19. Let us observe that since the source on the right-hand
eside of Eq.(2.19 is proportional tg3(r;) B(r»), the fieldm,,

can be approximated as

r
I’l— E 5/\

r
r2_§

tions, let us make a remark concerning fluctuations on the r r im_ r
background of the instanton. In the linear approximation + oAt 5|0t 5| =510 Mi— 5
. . X ; 2 2 2 2
over the fluctuations we obtain an estimate for the typical
fluctuation ofR?, r r r
X O I’2+E + 6 r1+§ N rz—z , 3.3

(6R")?~yDR|t|d™ L. (2.25
wherem.. are functions of time only. Writing it, we implic-
Note that the fluctuations d% tend to zero when—O0 since  itly assumed that the field,, is smooth near the points
Ry, is fixed att=0. Comparing the estimat@.25 with Eq. = 1/2. Then the relation£2.20 and(2.21) give
(2.22, we obtain 0
192=2nJ dt{x(Ry)—x(R-)}, (3.4
(6R?)?/IR?7~d L. (2.26 -
where we introduced

We conclude that the fluctuations on the background of our
instanton are weak providets 1. The above evaluations are R.(t)=R(t,r/2x/2), R_(t)=R(t,r/2,—r/2). (3.5
rough and need a more accurate anal{gi® Appendix B2
Nevertheless, they show that the Richardson behdg2i@2) Substituting the expressidB.3) into the Egs.(2.18 and
inherent for our instanton suppresses fluctuations on its back2.19, we obtain a closed system of ordinary differential
ground. equations form. and R... It is convenient to proceed in

The system(2.18 and (2.19 consists of two nonlinear terms of the effective action. Substituting E§.3) into Eq.
integro-differential equations with boundary conditions im- (2.23, we get
posed on the opposite sides of the time interval, that is, at 0
=0 for Ry; and att= —< for m;,. Therefore, in the general i T= J dtfy X(m_4R? —m.4R%)—E], (3.6
case it is very difficult to solve the instanton equations. Nev- —
ertheless, one can hope that for some particular objects the
system of equations can be reduced to a simpler form allow- E=y?x(R.)—x(R)}+D(m,—m_)
ing the complete solution. This hope comes true for the D(2— )

structure functions. _ 2 2
4d(d_ 1) {mfgol—}_ 2m7m+ Pt my @3}- (37)

I1I. INSTANTON FOR STRUCTURE FUNCTIONS Here we introduced the designations
Using the general scheme developed in Sec. II, we will 4(d+1—1)
examine the expressions for the structure functichg) at 1= R2R* Y—R% "][RZ—R?%]

largen. In other words, we will be interested in the statistics 2=y
of the passive scalar difference taken at the points separated

by the distance. Since the diffusivity is neglected, we can- —R2r4
not examine the differencé(r/2)— 6(—r/2) itself. Never-

theless, we can treat the statistics of the differences averaged

over separations near So we should consider the object

(1.15 with =R}

(2R? —R?%)?

A—y
Ry 7+ ~

' (3.8

R27 2R2-RZ
+
R2™7 R2

’ @3:_R1

R'Y
1+ —ﬂ

r
2

Since the effective actio(8.6) depends only on the functions

fi+ m..(t) and R.(t), one can obtain the system of ordinary

. (3.9

r
B(ry)= 5A( ry— 5) —Oa



5782 E. BALKOVSKY AND V. LEBEDEV PRE 58

differential equations for the functions as extremum condi-  $=(1+0)2 *"[(1+0)? 1—1][(1+v)¥"—1].
tions of the action. The boundary conditions for the equa- (3.15

tions areR, =0 andR_=r att=0 [see Eq.(2.14] and ) L
m.—0 att— —. Resolution of the system allows one to Here we kept main contributions ovdronly. In Eq.(3.14

2 __ 2 i
find m, andR. as functions of time. Once they are known, W€ Sely"= —|yl* since as follows from Eq¢2.21) and(3.4)
it is possible to restore the functid®y, in the whole space Y IS @n imaginary number. Extremum conditions for the ac-

from Eq.(2.18. The problem is discussed in Appendix B 1. tion (3.13 read
There we argue that the functidR, is really smooth in dv  oH du JH
space, which is a justification of the procedure described. y‘ld—: R y‘ld—= a0
Since we accept Eq2.16 d>1. Using the inequality, & I ¢ v
one can keep in the function®.8) only the terms of the \hjch are canonical equations for the variablesndv in
main order oved. This means that one can neglect in EQ. «tjme” &. Of course, Eqs(3.16) could be obtained directly
(3.9) the second contribution t@; in comparison to the first  from the extremum conditions for the acticd.o).
one and alsap,, 3 in comparison top;. Potentially this To conclude, we reformulated the problem as follows:
procedure is dangerous. We will show that due to the smallging such a value of that the solution of Eqs(3.16 with
ness ofr/L, the intervals wher®_—R,<R_ play an im-  the giveny, being substituted into E43.12), reproduces the
portant role. Then we see that it is the differencdRofthat  ¢orrect value ofd= — in/y. Below we discuss the first and
enters the first term i, , while the others do not contain the most difficult part of the program that is solution of the
this smallness. Therefore, we observe cancellations thq,tystem(g_lﬁ)_ Though it cannot be integrated exactly, we
could lead to a competition afandL/r (the latter parameter ¢an solve the system approximately by asymptotic matching,

is considered as the largest in the probleffo check the \hich is enough to determine the structure functips
possibility, we performed calculations keeping all the terms

in Eqg. (3.8). The calculations are sketched in Appendix C. B. General structure of the instanton
They show that in the final expressions only combinations of . o L .
@123 containing the same cancellations are of importance. The e"o"ﬂ“on ofR_, in time £ can_be divided into three
The legitimacy of the procedure is proved. stages. During the first stage, startingéat —, both R,

Omitting ¢, 5in the expressiofi3.7) and then varying the andR_ are much less thah and it is possible to sub_stltute
action (3.6) overm, , we get a trivial equation foR, , both x(R.) andx(R-) by x(0). Then the last term in Eq.
(3.19 is equal to zero. During the second stdge~L and
y 19,RY=-D. (3.9  thelast term in Eq(3.14) is of importance. During the final
stage, whereR, ~R_>L, one can again neglect the last
Its solution, satisfying the boundary conditi® (0)=0, is  term in Eq.(3.14). Note that only the second stage contrib-
simply utes to 92, which can be seen from E@3.12. Since the
HamiltonianH [Eqg. (3.14)] does not explicitly depend on
RY=9Dlt|. (3.10  time ¢ during the first and third stages, its value is conserved
there. Actually, the value of is equal to zero during the
third stage sincet—0 andR,~R_>L at&{— +«. On the
other hand, during the first stage the valdig of the Hamil-
_| af Y _pY _ y tonian functionH is nonzero. Therefore, during the second
Ry=Le, RT=RL(1+v), w=m-Ri. 3.1} stage the value dfl diminishes and should finally reach zero
As time t goes from 0 to—o, the variable¢ runs from when the trivial third stage starts. The value léf as a
—w to +o andv runs from + to 0. The latter is clear function ofn has to be established from the matching of the
from the asymptotic behavidR? ~R” =yD|t| att——.  Stages. . _
The relation(3.4) in terms of the new variables is Now we are going to solve Eq3.1§ for the first stage.
Resolving the equatiokl=H, in terms of x we get

(3.16

To examine the behavior & _ it is convenient to pass to the
new variables

L7 + o0

92=2n— dée” x(R,y)—x(R)]. 3.1 d
ng|  déex(Ro)-x(RHL (312 n=7500-0), (3.17

Recall that the energ¥ entering the action3.6) is an

i i i 4H
integral of motion whose value is equal to zero. Thus we can G(v)=* v+ 1¢" (3.18
perform the standard procedure of excluding a degree of d
freedom in a canonical system. Equating the expregSom i
to zero, we can express, in terms ofu, v, and¢. Substi- Then we find from Eq(3.16
tuting the result into Eq(3.6), we get do
s yild—gz—G(v). (3.19
—izzf dé(y 'udp—H), (3.13 _ _
—o At §¢— —oo (that is at smallt|) the functionv should de-

5 y[2L? crease with increasing sinceR_~r andR, increases. To

_ m- y _ e ensure the negative value d6/d¢ in Eq. (3.19 one should
H=—pot d ¢v)+ D [X(Re)=x(R-)]e™, take the positive sign of the square root in E818), which

(3.19 leads to a positive value @. The sign ofG can be changed
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if during the evolutionG turns into zero, which corresponds thenG cannot be zerdexcept for the point =0). Then the

to the presence of a reversed point in the dependenegenf integral on the left-hand side of E¢3.21) reaches its large

& value atv<<1. Substituting into Eq(3.18 the asymptotic
Equation(3.19 enables one to find as a function oft. expression

Let us integrate the equation ov&from — to some value.

Then we get 2(2—
g . ( 27)02, (3.23
Y
v |1 1 vRY
f dx X G(X) =N —- (3.20  valid atv<1, we can calculate the integral on the left-hand
- r side of Eq.(3.2)) with the logarithmic accuracy and find
To avoid difficulties related to infinite values gfandv at r
the initial point, we subtracted fronG ! its asymptote In”*zyVl_Hlchm([)' (329

G 1(x)=1/x at largex. This enforces the convergence of
the integral(3.20 at largex. The constant of integration in We see that due to<L, indeedv, <1.
Eg. (3.20 was established from the limit—: Since the In the opposite caskl;<H. the situation is more com-
integral on the left-hand side of E(B.20 tends to zero as  plicated. From the asymptotic expression
increases, the right-hand side of E§.20 should also tend
to zero. This requirement is ensured by theéependent fac- 8(2—1y) 4—y
tor in Eq. (3.20 sinceRY ~r”/v atv—o, as follows from G?(v)~| - T(HC_Hl)_" 2y "
the boundary conditio®R_(0)=r and Eq.(3.11). The left- 4
hand side of Eq(3.20) s_hould be'viewed as a contour inte- valid atv<1, we see thaG is zero atv =v, , where
gral, which determines its value in the case of the nonmono-
tonic behavior ofv as a function of. 16(2— )
Equation(3.20 allows us to establish a relation for the vr=dT(Hc—Hl). (3.26
parameters characterizing the first stage. Let us consider the v(4=7)
integral over the whole first stage. Then we should substitut?:t
v=uv, in EQ.(3.20, wherev, is the value ob at the end of
the first stage. The initial substageherev=1) gives a
constant of order unity in the integral on the left-hand side o
Eq. (3.20 sinceG(x)~x there. We neglect the contribution
substitutingu ~ 1 as the lower limit in the integral. Then the
integral fdx/x produces just @, which is canceled by the
corresponding term on the right-hand side. Next, at th
boundary between the first and the second stdges L

v?, (3.29

is just the reverse point where the derivatige/d¢
changes its sign. Therefore, the sign®is positive during
fthe initial part of the first period and negative during the final
one. Thus we should take the upper sign in 8418 for the
first part and the lower sign for the second part. The main
contribution to the left-hand side of E(.21) is determined

by the region near the reverse point v, ~v, where we can
QUse the expressiof8.25. The explicit integration gives

since the pumping enters the game there. Therefore, with the d L
logarithmic accuracy one can write ~\/ T yIn—. (3.27)
22-y) JA—H, T
ve dx L . . . .
_f m:ﬂn(r)_ (3.2)) Since the logarithm is largei, is close toH. and hence
1

v,<1, as we implicitly assumed in the expressi$125).
Note that Eq.(3.27) does not fix the value aof, , as it was
We see that there is a large paramétér in the argument of for H;>H..
the logarithm on the right-hand side of E§.21). An analy- Now we should extract additional relations that along
sis shows that due to this large parameter there are only tweith Eq. (3.24 or (3.27) will fix the instantonic solution and
possibilities to satisfy the relatio(8.21). Both of them are determine the final answer for the structure functions. It can
related to zeros of the functio® because only near the be done by establishing the evolution during the second stage
points whereG is small can the integral reach a large value.and by its subsequent matching with the first stage. Unfortu-
The first possibility is realized whefs is zero only atv nately, the procedure is rather lengthy and is individual for
=0. In this case, <1 andv is a monotonically decreasing each particular case. We present the calculations in Appen-
function. The second possibility is th& is zero at some dix D.
pointv=wv, . That is just the reverse point where the deriva-
tive dv/d& changes its sign; see E@.19. Then the integral C. Expressions for structure functions
on the left-hand side of Eq3.21) is determined by the vi-
cinity of the point sinceG is small there.

A choice between the possibilities depend on the value o
H,. If H;>H., where

Based on the reasoning given in the preceding subsection
fTand on the calculations described in Appendix D, one can
establish expressions for the structure functions from the re-
lation (3.2). Here we enumerate basic results, referring the
reader interested in technical details to Appendix D.

The casdH,>H_ is realized ifn<n. (see Appendix D},
where

dyz

SC PR

(3.22
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__3 3.2 i<  In- 33
nc—z(z—_y). ( . 8) na Y nF, ( . 5)
Calculating the actiof and 9 (see Appendix D)land sub-  Which restricts the region where the express@133 is cor-
stituting the result into Eq(3.2), we obtain rect. For largern the character of the PDF essentially
changes and it tends to a single-point PDF that is similar to
nP,C, \™2r\én Eq. (3.39 but does not contain thedependent factor.
~(; D 7) (E) (3.29 Note that the casey<1 and 2- y<1 need a special

analysis, which is performed in Appendix D 3. The answer
2 (3.33 should be slightly corrected in the case<1 and
_ny_(@=yn 3.39  keeps its form at 2 y<1.
"2 2d ' We can treat the structure functid, as a continuous
function of n. Then the vicinity of the critical valuea=n,
The quantityC, in the expression(3.29 is a constant of requires a separate consideration, which is presented in Ap-
order unity, whose value depends on the shapg @hat is, pendix . The main peculiarity that appears in the expressions
on the details of the pumpingind is consequently nonuni- for the structure functions is a critical dependencenoffhe

versal. Note that the-independent factor in Eq3.29 is  expression for the structure functions can be written as
determined by the single-point root-mean-square value of the

passive scalar (n—ny)? P,C. , ne/2 r)gn (338
YN, D L)’ ’
P
2 2
armst_yLy- (33D which implies the conditioin—nc|<n.. The factorsC.

are nonuniversal constants of order unity which are different

Comparing the expressid8.30 with Eq. (1.10, we see that for the casesi<n; and n>n.. The exponent, in the
they coincide under the conditioms>1 andds1 that were ~ €XPression3.3 are determined by Ed3.30 if n<n. and
implied in our derivation. Surprisingly, the dependence of ¢n=¢c [Ed. (3.32] if n>nc. In the consideration made
¢, given by Eq.(1.10 is correct not only in the limif1.11) above we suggestgd thal is the smallest parameter of our
(that is, forn<n,), but up ton=n, which is the boundary theory. However, iin—n., then|n.—n| starts to compete
value for Egs(3.29 and(3.30. with r/L and at small enough.—n the consideration pre-

A detailed consideration of the casg>H_, is presented se_nted in App.EI."IdIX is mapphcgble. The_ criterion that dgter-
in Appendix . It shows that this possibility is realizedrat Mines the validity of Eq(3.36 is established in Appendix
>n.. Then the scaling exponens appear to b& indepen- D4,

dent and equal to the value n

n—= . .
d) | ! IC|

§C=8(2—_’y). (3.32

We see that the first factor in E(B.36) possesses the critical
. ) behavior proportionaln—n.|" that is saturated in the nar-
Then-dependent numerical factors 83 can be found in two o\ vicinity nearn=n., where the conditiori3.37 is vio-
limits: n—n.<n; andn>n.. The former case is discussed |ated. To avoid a misunderstanding, let us stress that despite
below, while in the latter case one can obté@ee Appendix the critical behaviorS, remains a monotonically increasing
D2 function of n at a fixedL/r. This is obvious forn>n,

whereas fon<n. it accounts for the stronger dependence on
L) e (3.33 n of the second r-dependentfactor in Eq.(3.36), which is
L) ' guaranteed by the inequalitg.37).

We presented the results of the analysis based on the

The quantityC, in Eq. (3.33 is again a nonuniversal con- saddle-point approximation. The account of fluctuations on
stant of order unity. The expressié®33 corresponds to the the background of our instanton could, in principle, change
factorized Gaussian PDF the results. Particularly the value &f could increase. There-
fore, one should estimate the role of the fluctuations. The

nP,C, \"?
~ = Y
> (v D L)

r\ e YD §? corresponding analysis is presented in Appendix B2. It
P(z‘})~(E exp ———|. (3.39  shows that for the conditioii2.16 fluctuation effects are
2C,P,LY weak and cannot essentially change the results obtained.

Let us stress that when calculatiSg~(| 9|") with the help
of the PDF(3.34), the characteristi@ is of the order of the
single-point root-mean-square value of the passive scalar We have performed an investigation of the structure func-
(3.31) and the relatively small value of the res(8t33 com-  tions in the Kraichnan model in the framework of the instan-

pared to a single-point value is ensured only by the smaltonic formalism. Though our approach is correct only for

r-dependent factor in Eq3.34). In Appendix D 3 we estab- large dimensionalities of space, we observe a nontrivial pic-
lish the inequality ture, some peculiarities of which could be realized in a wider

CONCLUSION
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context. Below we discuss the results obtained. Einstein Center, from the Minerva Center for Nonlinear
We have established thedependence of the scaling ex- Physics at the Weizmann Institute, and from the ENS-

ponents, which are determined by the express®80 for Landau Institute Twinning Programme.

n<n. and remain the constaf®.32 for n>n., wheren, is

defined by EQq.(3.28. Our results contradict the schemes APPENDIX A: SINGLE LAGRANGIAN SEPARATION

proposed in26,27. The value(3.32 is different from and ] ) o .

smaller than the constant obtained [8], which can be In this ap_pendlx'we treat the statistics of a'smgle Lagr.ang-

considered really as an estimate from above. ke, our  1an separation de_flned by qu.4). The con5|derat|o_n will

expression coincides with the answer obtained perturbativel§!loW Us to establish the relatid@.9) and also to clarify the

[17,1§ at larged. Surprisingly, the quadratic dependence of condition(2.16.

{,onnis kept up ton=n;. Such am dependence of,, is

well known from the so-called log-normal distribution pro- 1. Richardson law

posed by Kolmogoroy39). _ _ A single Lagrangian differencB between two Lagrang-
The expressiong3.29 and(3.33 reveal the combinatoric g, trajectoriep and 0+ R is governed by the equation

prefactors inS, that are characteristic rather of a Gaussian

distribution. A natural explanation can be found in terms of dR,=W,=v (0+R)—v(0), (AL)

zero mode ideology15-19,41. We know that fom>2 the

main contribution to the structure functi®, in the convec-  With the correlation function

tive interval is related to zero modes of the equation for the

nth-order correlation function of the passive scalar. The ex- (Wo(t)Wg(t2))=2K4p5(R) 8(t1—t7),

ponents of the modes are determined by the equdtiad b B (A2)
could be very sensitive to the valuemy, whereas numerical K, 5(R)= _R—7| Y (R?8,,—R,Rz) +R28, 41,
coefficients before the modédetermining their contribution op d (d—1) b Telh “h

to S,) have to be extracted from matching on the pumping . :
scale where the statistics of the passive scalar is neargIIOWIng from Eq.(1.6). First of all, we get from Eq<2.10
Gaussian. This explains the combinatoric prefactors in Eq .nd (213
(3.29 and(3.33. Probably the most striking feature of our 2D
results is the unusual behavior 8f (treated as continuous (L(t)L(ty))= FRV@(tl_tz), (A3)
functions ofn) nearn=n;, which is determined by the ex-
pression(3.36).

Now we briefly discuss the interpretation of our results.
The log-normal answe(3.29 and (3.30 can be obtained if t—At
we accept that for large fluctuations, giving the main contri- R(t—At)— R(t)%Rl’V(t)J dr{(7), (A4)
bution to the structure functio8,,, the pumping is inessen- t
tial and the fluctuation is smooth on the scaleThen one
obtains from Eq.(1.1) the equation for the passive scalar
difference taken at the separation

where in accordance with E€R.8) =y 19,R?. Then

where we believeAt>0 to be a small time intervakecall
that we treat evolution backward in tilneAveraging over
the velocity statistics on the interval frohto t— At, we get

dIn(A0)=—v-r/r? from Eqgs.(A3) and (A4)
t = . ,

2D
where we substitute® 6 by A 6/r. We immediately get from ([R(t—=At)—R]*)= FRZW, (AS)
this equation a log-normal statistics farg that is a conse-
quence of the central limiting theorem. The saturatiomat \hereR=R(t).
>n. can be explained by the presence of quasidiscontinuous | et us write now
structures in the field making the main contribution to the
high-order correlation functions of. Note also a similar
nonanalytical behavior of,, for Burgers’' turbulenceg7], Ra(t_m):Ra(tHﬁ
which is explained by the presence of shocks in the velocity
field. Although formally our scheme is applicable only in the which is the direct consequence of Hé1). Then we find
limit dy>1, one can hope that the main features of our refrom Eq. (A6) in the approximation needed for us
sults persist for arbitrary values of the parameters. This hope
is supported by42], where a saturation af, was observed R*(t—At)—R¥(t)
in numerical simulations of the Kraichnan modeldat 3.

t—A

‘drw,[rR.(7)],  (A6)

t—At
~2RQJ drw,(7,R)
t
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where agairR=R(t) and we used the incompressibility con- aPIo|t|= Kap(R)V V gP. (A11)
dition sw/ 9JR=0. Averaging the expression over the velocity
statistics on the interval frorhto t—At, we get The same problem foy=2/3 was considered by Kraichnan

[43], who obtained the asymptotic behavior Bfat large
timest. Here we present a straightforward generalization of
Kraichnan’s scheme for arbitrary.
. i Suppose that at=0 the PDF isP= Ré’db‘(R— Ro); the
where we used the expressio#2) and taken into account nitia| condition corresponds to a fixed value [6F] att=0.
IKap(R)/IR,=0. Then we obtain from Eq$AS) and(A7)  The above expression implies the normalization condition
D JdR R~1P(1,R)=1. Solutions corresponding to other ini-
(R(t—At)—R)~ E(d+ 1—y)RI7At. (A8) tial conditions can be expressed via this fundamental solu-
tion since Eq.(A12) is linear. Due to isotropyP will be a
function of R only. Then Eq.(All) is rewritten as

(R¥(t—At)— R2>~2E(d+2— YRZTYAL, (A7)
d Y ,

Next, we get from the definitio2.8)

(RY(t—At) —R?)=— y({)At. (A9) dop_ 1 i(
D dlt] Rd-14R

J
RU+1- Vﬁp) . (A12)
Expanding here the difference up to second order &(gr

—At)—R and substituting then EqéAS) and (A8) we find ¢ coyrse Eq(A12) can also be obtained directly from Eqgs.

finally (A3) and(A10).

(¢)=-D. (A10) Performing a Laplace transform of EgA12), one obtains
Note that the average is negative, which is a consequence of PUR) = fAde—)\ex;(B)\M)S()\ R (AL3)
considering an evolution backward in time. ' A—ico 27T d o

The average valu¢() is obviously the same for all the
Lagrangian separations. Therefore, we arrive at ), where all the singularities af(\) have to be to the left of
leading then to Eq(2.22, which is a manifestation of the the integration contour. The functighin Eq. (A13) satisfies

Richardson law. the equation
2. Simultaneous PDF O
) ) o ~ =R 58| = —5=7 9(R—Ry).
The Kraichnan model admits a closed description of the RI"1 IR JR Ro

simultaneous probability distribution functid”(R) for any

single Lagrangian differend®. The point is that Eq(Al) in ~ The equation can be solved separately in the regi@ns
this case can be considered as a stochastic process with whiteR, andR> R, where we deal with the homogeneous equa-
noise on the right-hand side. It is well known how to obtaintion and then the matching conditionsRé& R, give us co-
the equation fofP(R) in the situation. Using the expression efficients. Assuming suitable boundary conditiossg finite

(A2) we get atR—0 and atR—x) we get
|
24\ 2\
, |V(%—R7’2) Kp(%—Rg/Z) if R<R,
S(\,R)=—(RRy) ~%2+72 Al4
( )y(Ro) 2%\ (2 (A14)
K,| —R”2|l,| —RY if R>R,.
Y Y
|
Herev=d/y—1, |, is the modified Bessel function, ad, dRrR?
is the McDonald function. =—— (A16)
If we are interested in the asymptotic behaviorRit,R) DyAt]

at large timegt|>dR}/D y?, thenR near the maximum oP

satisfiesR>R,. In addition, in the integralA13) the char-  hich gives the asymptotic self-similar behavior of PDF. We

acteristic value\ nap<|t| ~* is small. Thus we can take only see that IfPe —R?. It is interesting that the asymptotic PDF
the second term in EqlAl4) (corresponding toR>Ro)  i5 Gaussian ay=2 for anyd. As we movey from two to

and substitute the first term of the expansibf(z)=  erq, the PDF is getting more and more non-Gaussian, reach-
' 1(1+v)(2/2)". Then the integralA13) can be taken ex- ing an extreme non-Gaussian natuteg-normality at y

plicitly and we obtain =0. Note an obvious consequence of E@sl5) and (A16):

- 1 ;
P(t,R)R 1dR:md§§ exp(—¢), (A15) (RE7yect] (AL7)
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for arbitrary u. The asymptotic lawA17) is a manifestation isfied for our instantonic solution. Second, fluctuations on
of the Richardson law. the background of our instanton should be weak.
It is not very difficult to calculate first moments using the
expressionAl5):
1. Triangle inequality

Dy2|t|)2/7F(1+v+2/7)

2 — . . -
(R%) ( d T+ (A18) Here we discuss the triangular inequal{®:15 that was

ignored in our saddle-point calculations. We argue that if the
parametedy is large, the inequality2.15 is satisfied for the
(R = ( Dy2|t|)4’71“(1+ v+4ly) (A19) instanton solution. In other words, we can say that calculat-
d I'li+v) ing the path integral2.13, we can dismiss the restriction
supplied by Eq.(2.15 because the contribution from the
In the larged limit the expressiongA18) and (A19) give regions where the inequality is violated is small in this limit.
o 20y Let us recall that the inequaliti€g.15 are obviously sat-
(R%)=(DAth*, (A20) isfied for both the initial conditiori2.14) and the asymptotic

(RY—(R?)? 4 behavior(2.22. Therefore, they could be violated only for
AR L A p(_> -1, (A21)  times of the order of the instanton lifetime. Our project will
(R?)? vd be as follows. First, we check that the inequa{2yl5 holds

for the instanton solution if we consider the instantonic equa-
tions in the main order over d/ Then we will show that
next-order terms over d/considered in Appendix C can lead
to violation of the inequality ifdy=<1. Generally, this pro-
cedure is complicated and here we present only some calcu-
lations that serve as a basis for our conclusions.
As a first step we have to restore the fi@lg in the whole
space, that is, for any two pointg andr,. This can be done
Here we discuss the applicability conditions of our as follows. Let us consider E(R.18. Substitutingm,, in the
scheme. First, the triangular inequali®.15 should be sat- form (3.3) we get

irrespective of the value of. We see that fluctuations &
are small ifyd>1 and in the opposite limiyd<1 the cu-
mulant of R? is much larger thagR?)2. We conclude that
the inequality(2.16) is just the condition at whiclR” only
weakly fluctuates near the val(2.22.

APPENDIX B

Dm_ (REZ7+R5,"— R 7—R3_")(RI_+R5, —RI, —R5)

-1 Y + I
Y ‘9tR12 D 2d R%Z_ sz__y (Bl)
We kept only the main term overd.in Q [Eqg. (2.1D]. In Eq. (B1) we introduced auxiliary fields
Rl+=R(I’1,I’/2), R]_,:R(rl,_rlz). (BZ)
They satisfy the closed system of equations
Ry 4o _Dbm_ (REZV+RY Y—R2,7"—RZ")(RZ_+R2-R?, —R?) ©3)
Y TOiRi4 2d RZR7 '
Dm_ (RZY+R* "—R¥7—R2 ") (R{_+R?2—R%, —R?)
’y_lﬁtR]}-,7+D:— 1 1+ + 1 1+ + , (B4)

2d R%: VRZ_*V

which can be obtained from E¢B1). Thus one can restore behavior of the fieldR,, wherer, , are close toxr/2. The

the functionRy, in two steps: first solving EqsB3) and  analysis shows that the fieR,, is smooth near the points.

(B4) and then substituting the functiofy . into Eq.(B1).  This is the justification of our reduction procedure leading to

Though at each step one should solve ordinary differentiajhe effective actior(3.6).

equations, this is a hard program and we are not able to Simple consideration shows that the most dangerous ge-

perform it entirely. Nevertheless, we can examine some cruemetry that could lead to violation of the triangular inequali-

cial cases. ties (2.195 is realized if two of the three points are close to
First of all, using the above scheme one can establish the=r/2, whereas the third ongay,r,) lies in the middle be-
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tween the points. In this cag®,, =R;_ and the triangular
inequality tells in this case that the differenc®2 —R_
should be positive. To prove the inequality let us write the
equation for this quantity

d(le,_ R,)
dt

D(2RIZY—RY77)

Dm_ (R 7-R* 7)(R2—R%) (R_.—2R;_)
d Rz__7 R_Rl_

(B5)

D V. LEBEDEV PRE 58

II(Z):| J dt drldrzgmlz’y_ 1(915RIZ
D 4
- af dt d’r Q12,34M120M3y
1 2.(2)
+ 5 | dtdrydro|y[*x'¥(Ryp) B(r1) B(r2)

D
~4q f dt d*r{25Q 12 34M120M34+ Q<122),3zm12m34},
(B6)

whered*r=dr,dr,drsdr,. HereRy;, is the field correspond-
ing to the instantorrecall that the way to restore it in the

whole space was discussed in Appendix)Brb,, is deter-

It is easy to show that at small times the quantitR,2

mined by the expressio8.3), andx?),Q®? are the second-
order terms in the expansion ovéR],. As follows from

—R_ increases. Suppose that at some moment of time ikgs. (3.1) and (3.3), the last two terms in E¢(B6) are rel-
becomes zero. Then the second term on the right-hand sid&/ant only for the points close te:r/2. Therefore, in the

of Eg. (B5) is zero, while the first one is negative. This
means that the differenceR2_ —R_ increasedrecall that
we move backward in timethough it should approach zero
from the positive side. The contradiction proves th&; 2
—R_ is always positive.

Let us now restore the terms subleading ovelr Bdding
the terms to Eq.(B1), we can repeat our consideration.

general case we can disregard these terms and return to the
estimate(2.26), which can be obtained if only the two first
terms in the actioliB6) are kept. However, we are interested

just in the behavior oR;, when the points; andr, are close

to =r/2. In this case a special analysis is needed.
First note that short-scale fluctuationsrf, are weak due
to the restriction(2.15), which makes the amplitude of the

Again, we should consider the same geometry as abovdluctuations proportional to the scale. In other words, we

Writing the equation for B, _—R_, we are convinced that
in addition to the two terms presented in EB5) one should
take into account also the term of the next order over 1/
This term is nonzero whenR _=R_ ; therefore, it starts to
compete with the leading term DR 7(27—1) if 2R, _
—R_ is small. In this case the leading term is proportional to
27—1, that is, toy at smally. Therefore, ifyd is not large,
we cannot make a definite conclusion about the sign of th
difference. Thus we arrive at the inequal{:16 formulated

should deal only with smooth functioi®,. Next, due to the
presence of the second term in the effective acti#®) fluc-
tuations ofm,, are relatively suppressed for points that are
not very close to=r/2. That is a consequence of thale-
pendence 00, 34[EQ. (2.11)], which in the case <1 has
deep minima if the points; are close to+r/2 (more pre-
cisely some linear combinations have deep minima; they just
determine the structure of strong fluctuationsngf. There-

fore, relevant fluctuations dR,, can be estimated in terms of

the expression{3.3) and, consequently, in terms of the re-

in the main text. The crucial cases investigated above makgceq action3.6). Since in the main approximation over

us confident that the triangular inequality holds for our in-
stanton in the whole space provided the inequdlyl 6 is
satisfied.

2. Fluctuations

the terms withg, and @3 can be neglected in E@3.7), the
integration ovemrm, can be done explicitly. That leads sim-
ply to fixing the expressiofi3.10 and reduces the action to
the form(3.13.

So we should estimate fluctuations ofand w starting
from the action(3.13 with the Hamiltonian(3.14). Actually,

Here we extend the analysis of the fluctuations presentede should check the validity of the semiclassical approxima-

in the Sec. Il B that is suitable for all the points excluding
vicinities of =r/2. The reason is that the quantityintro-
duced in Eq.(3.1)) is small during some stages of the evo-
lution. ThereforeR, =R(r/2r/2) andR_=R(r/2,—r/2) are
almost equal to each other. Thus we should check that flu
tuations do not destroy this proximity. Having the problem in
mind, we will assume <1 below.

We can take the effective actiof2.23 as the starting
point of our analysis. It will be enough for our purpose to
examine fluctuation effects in the harmonic approximation
Therefore, we should expand the effective acti@123 up to
second order over the fluctuatiodR?, and ém;,. The first-

C

tion for this system with one degree of freedom. It is more
convenient to perform this conventional procedure in terms
of the canonically conjugated variabl@sand q where p

= uv/y andv =exp(@). Then the Hamiltoniar{3.14) is re-
written as

2(2—y)|
d |

R X' (Ry)exp(q),

4—vy )
15 exa) |p

H=—yp+

_WE

Dy (B7)

where we took into account<1. The subsequent analysis

order term of the expansion vanishes due to our saddle-poirshows that the semiclassical approximation is broken only in

equations. The second-order term can be written as

the vicinity of the reverse point, that exists ah>n.. Let
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us estimate this vicinity. Near the reverse point the last ternsmall. Fortunately, this is not the case. In this appendix we
in Eg. (B7) can be neglected and resolving the relatldn  will consider the equations, following from the acti¢d.6),
=H, we get not neglecting terms subleading oved1\We show that/L
does not interfere with dl/and the scheme presented in Sec.
Il is reproduced with minor modifications. Repeating the
, scheme, we obtain expressions for the anomalous exponents

[A—y —————
1+ 2—7 eXliCI)—vr
{, in this formulation. To avoid a misunderstanding let us

where we substituted E¢3.26. The semiclassical approxi- stress that our scheme is correct only in the lichjt>1 (see

=3

mation is broken ifo~2dp/dg~ 1, which gives Appendix B 1. Therefore, one could consider this appendix
only as a demonstration of the absence of the aforementioned
v2 conflict of limits.
VU~ ¥<Ur . Below we will assume thaD=1, L=1, and P,=1,
¢ which can be done by rescaling timethe coordinates, and

Since the main contribution to the integrals such as Eqthe passive scalad. To restore th% full answers one should
(3.2)) is made atv—v,~v,, the above narrow vicinity add simply the fac'_[c_JPQ/DLVtof} in all expressions.
(where the semiclassical approximation is brokenirrel- ~ Extremum conditions for the actio(3.6) give four equa-
evant for our results. tions of motion for the quantitieR.. andm.. . As before, the
Of course, the above analysis of the fluctuations on théoundary conditions to the equations @&e =0 andR_
background of our instanton is not exhaustive. Nevertheless: ' att=0 andm.—0 att——. The equations are ca-

we believe that the arguments presented demonstrate ti@nical, with the Hamiltonian given by Eq3.7). Since it
weakness of the fluctuations. does not depend on time explicitly, the energy is conserved.

Moreover,E=0, which is a consequence of the asymptotic
behaviorm. —0 of the instantonic solution dt— — .

As it is known from classical mechanics, for a Hamil-

As was mentioned in Sec. Il A, keeping only the main tonian system that has an integral of motion one can reduce
term over 1d in the action(3.6) is potentially dangerous the number of degrees of freedom by one. In our case, we
because of a possible conflict of the limids>1 andL/r can pass from the system of four canonical equations to that
>1. If this were the case, our results would not be applicabl®f two. Let us express, say, via the other variables with
deep in the convective interval, where the ratib is very  the help of the conservation la&=0:

APPENDIX C

M. @3=a—M_@y—\(M_@y— a)’— @a[M” o3+ 2a(m_+|y|?U)], (Cy
where
B ~2d(d-1)
U=x(R;)—x(R-), N (C2

The sign in front of the square root in EGC1) should be minus to ensure the correct behavioR pfat small time.
Let us make the substitutiof3.11). Then we obtain a generalization of E¢3.13 and (3.14),

—izzf dély *ud —H], (C3
H=—u(l+v)+ a_Tl;%— b3 V(= )= da{u?py+2al w+|y[?Ue? ]} (C4
Note that
_H+u(l+v)

U=x(e5)—x[(1+v)"ef], m,
e'}’f

We introduced here the notation
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$1=—(1+v)> [(L+0) 27— 1][(1+0)* 27— 1-0],

1. [2(14+0v)%"—17? . 4(d+1-vy)
1+v 2—vy

(CH
1 2+v

+ - =— .
(1+0)27 1 (1+0)2 P= " Ty

$r,=2

One can derive also a generalization of E8j12),

92 fm 2nae’U dé¢
~o (o= @)= pa{ulhy+2al pu+y[PUe?E]}

As before(see Sec. lll Awe can divide the evolution into 16(d— y) 2
three stages. Let us analyze the first stage. Sihe® there, Sg=—2v2, Sy=——v?,
the quantityH does not explicitly depend ofiand therefore Y Y

its value (which we designatéd,) is conserved during the

first stage. Then from the relatiq@4) we can expresa via  valid atv<1. Note that all the functionS, have the homo-

v as geneous behavior proportional t& at smallv. Therefore,
starting from the relatior§3.20, we can find the same esti-

_av—H Sk mates(3.24) and(3.26 for v, andv, with small corrections
m= S, ’ (€O of the order 1d.
Next we should analyze the second stage and match it
F= \/H§S3+2aH182+a2v2. (C7) with the first stage, that is, a repetition of the procedure de-

scribed in Appendix D. As a result we find the exponents
We introduced the shorthand notation

1
— 2 2
Si= 1 +2(1+0v) o+ (,253(1+U)2, (C8) §n—§[a— \/a —2ayn+4(d—y)n<], (C13
S;=d1+ P+ (L+v)( Pt ¢p3), (C9 N v
L =—(1— 1——). (C19
S3= b5~ habs, (C10 K 4(d-7)
Sy=do+(1+v) 3. (C11)  Inthe limit yd>1 we recover the previous resu{&30 and
(3.32. To avoid a misunderstanding, let us stress that the
Then we can derive an equation for expressiongC13 and(C14) cannot be used to establisid1/
corrections to the exponen(8.30 and (3.32) since contri-

I +SF, G C12 butions of the same order, related to the triangular inequali-
Y = aS,+H,S;7S,F, (v).  (C12  ties(2.15 and fluctuations, are unknown.

This equation is the direct generalization of £§.19. To APPENDIX D

ensure the finite value of the acti¢83), one should take the

lower signs in Eqs(C6) and(C12). A solution of Eq.(C12) In this appendix we present a consideration of the second
with the correct boundary condition is given by H§.20,  stage and matching conditions for the instanton solution. The
whereG should be substituted from E¢C12). procedure appears to depend strongly on the ondefr the

Let us establish the behavior & at smallv, which is  structure function. Therefore, we consider different cases
important for the description of the first stage. To do that, weseparately. The designations used below were introduced in

should take into account the relations Sec. Il
bi=—2—3v+ 8d_43’_ 7’202’ 1. Intermediate tail
Y Let us first consider the case where the behavior of the

functionv (£) is monotonic during the whole first stage. As
s ) was demonstrated in the main text, this case is realized if
¢Pr=2+v— ;v , $P3=—2+v—v7, H,>H_. and the variables is small at the end of the first
stage. We will show that the variable remains small also
8(d during the second stage, going to zero at the third stage.
32:(__7)02 Therefore, the evolution af during the last substage of the
y v first stage and during the second and the third stages can be
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described in terms of the Hamiltoni#B.14), where the con-

dition v <1 is utilized, which simplifies the analysis essen-

tially.

In the limit v<<1 we get from Eqs(3.14) and(3.195

2(2— 2
(2—7y) 22 |y|

d’yz R1+y /(R )l)

H=—puv+
(D1)
We see that the first two terms in the expresgidh) depend

only on pv. This is the reason why the equation for the

guantity

_Iyl?
D

d(uv)
d¢
that can be derived from Egd1) and(3.16 contains on the

right-hand side only the term proportional fd(R.). The
term can be neglected if eithé&, <1 or R.>1, that is,

Rl+y /(R+)

(D2)

during the first and during the third stages. Therefore, the
quantity wo is conserved there. Recall that due to the bound-

ary condition,u=0 at é—o and consequentlgv =0 dur-
ing the third stage.

Integrating the relatioiD2) from any ¢ corresponding to
the last substage of the first stage up-tee, we get the
integral relation

yl?
D

e (D3)

J déRY "X (Ry)v,
which is correct for the first stage if<1. It is instructive to
compare Eq(D3) with the relation

2 2n 1+y 1
9 :_'y_D déRY VX (Ry)v, (D4
which can be obtained from E@3.12 at v<<1. Recalling
also the relatiory=—in/9 [Eq. (2.21)], we get

yn

MU = ? (DS)

Substituting Eq(D5) into Eq.(D1) and neglecting the term
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Recall thatv, is the value ofv at the end of the first stage.
Substituting Eqs(3.23 and (D6) into Eq. (3.18 we get

G=v(1—-n/ny), (D8)

wheren, is defined by Eq(3.28. Recall that the monotonic
behavior ofv implies G>0 and therefore the expression in
Eq. (D8) is correct ifn<n;. This means that fon>n. the
instantonic solution of the considered type does not exist and
we should look for another possibility. We postpone the
problem to the next subsection and continue to analyze the
monotonicv regardingn<n..

Substituting Eq(D6) into Eq. (3.24 we get

1 L
n—=(1—n/nc)ylnr. (D9)

*
Next we should find the leading contribution to the action.

This contribution is made mainly by the first stage producing
a large logarithm. Therefore, we can write, using 313,

1
i 7~ yilf dv
Ux

Substituting here Eq$D5), (D6), and(D8), we find with the
same logarithmic accuracy

_ (2=y)n?
IZ——TmF.

H,

_l’_
kTG

(D10)

Finally, we can determine the structure functi@s[Eq.
(1.2] in accordance with the formuled.2). Collecting Egs.
(D7), (D9), and(D10) we obtain the expressior{8.29 and

(3.30.

2. Remote tail

Let us proceed to discuss the character of the instantonic
solution atn>n;. We can solve the corresponding equations
in two limiting casesn>n. andn—n; <n;. The latter case
is considered in Appendix D 4. In this subsection we accept
n>n.; the inequality ensures alsg >1 (recall thatv, is
the value ofv at the end of the first stageDue to the
conditionv, >1, the last substage of the first stage and the

with x’, we find that the value of the Hamiltonian during the second stage can be examined in terms of the Hamiltonian

first stage is

ym o 2-v ,

Hi== 5t % " (b6

During the second staggv diminishes fromyn/2 to
zero. Therefore, the equation

i

shows that the quantity does not vary essentially during the
second stage. Then we obtain from E@34) and(2.21) the
estimates

dinv

dé

4(2-y) )
dyz H

(D7)

vl _, y
U+_R+[X(R+) X(Ryv™M)],

(D11)

which follows from Eqs.(3.11), (3.14), and(3.15 atv>1.
At the end of the first stagR_~L, whereasR, ~R_ /v
<L. The second of Eq$3.16 shows thaju, which is equal
to zero atR_>L, varies essentially @&_~L. To find the
value ofu at R_<L, we will use the relation

H=—,uv+2d

ly|?

(H+ wo)R7]= "X (Ry)Ry, (D12

dé
which follows from Egs.(3.16 and (D11). Actually Eq.
(D12) is the equation fom, that can be obtained from Egs.

(3.6), (3.7), and(3.9) under the same conditions that led to
Eq.(D11). SinceR, <R_~L during the last substage of the
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first stage and the second stage, the right-hand side of EGhe general picture given in Appendix D 2 does not essen-
(D12) can be neglected and we get a conservation law fotially change, but particular answers should be slightly cor-

(H+uv)R,”. Equating the values of that quantity Bt

<L and atR_>L, we find that at the end of the first stage

dly|*P,

Moy Uy ™ D LY.

(D13

Now let us return to the relatio3.4). Since R_~L

>R, at the end of the first stage the main contribution to the 2d D

integral(3.4) is made when already_>L andR, increases
to L. Using Egs.(3.4), (3.10, and(2.21) we get

P D
ﬂ2~ny—éL7, ly|2~n—2 (D14)

P,LY

Substituting the expressid®14) for |y|? into Eq.(D13), we
conclude thatu,v, increases withn. In addition, at
R_<L the Hamiltonian(D11) should be equal tdd;~H,
[Eq. (3.22)], that is,
2
)73
— MUy Tt %v*~HC.

At v, >1 the relation leads to
v, ~\yn/d.
Actually, u~2d during the whole last substage where

>1. Deriving the expressioiD15) for v, , we used the
estimategD13) and (D14).

py~2d, (D15)

rected.

The casey<1 needs special consideration since, as fol-
lows from Eg.(D15), the conditionv, >1 is violated atn
~d/y>n.~dy. Therefore, an intermediate region exists at
n.<n<d/vy, wherey<v,<1. Then we get from Eq3.14

w P
H=—puv+ 57+ —RI[x(Ry)—x(R.)], (D18
where
R_=R,exp(v/y). (D19)
Equations(3.16) now read
O oyt D20
ERARRA T (D20)
du ly|?
FrRLE 5 RIR-X'(R-). (D21)

At the end of the first stag®_~L. As follows from the
relation (D19), due tov, >y, the estimatdR <L is valid.
Therefore, the integrdB.4) for 92 is determined by the time
interval between the moments whBn andR_ go through
L. We can again pass to integrating oW in accordance
with Eg. (3.10. ThoughR, <L at R_~L, yRY~RY(1
—v) due to the smallness of. Therefore, we return to the
estimates(D7). Next we can estimatge., from Eq. (D21)
where the termyu is dropped. SinceR” ~L? at R_~L,

Now we can turn to the calculation of the effective actionintegrating overf we obtain from Eq(D21)
(3.13. As before, the main contribution to the action is made

by the first stage. Hence

i7= 1f do+ 1g D1
II——; m U+E v. (D16)

ly|?

P~ "5 L7Po. (D22)

To justify the estimaté€D22), one should check that does
not vary essentially in the region wheRe.~L. Using Eq.

Moreover, only the contribution related to the vicinity of the (D20), we obtain that the condition is satisfied. Substituting

reverse point is relevant. Using the relati@21) we obtain
) L
|I~Hcln?. (D17)

Here we substitutedH,~H_ and took into account that

has no singular denominator, which is clear from the relatio

(3.17. Finally, we can determine the structure functi®s
[Eqg. (1.2)] in accordance with Eq(3.2). Collecting Egs.
(D14) and (D17), we obtain the expressio(8.33 of the
main text.

The expressioiD15) shows that indeed, >1 (which is
the applicability condition of the above considerajiai n

>n. if there are no additional small parameters. The next

formulas (D7) into Eq. (D22), we obtain the previous rela-
tion w,v,~7yn>|H.|. Equating then the Hamiltonian
(D18) to H. atv=v, we get

yn
My ~Ndyn, vy~ V a-

(D23)

nl’he estimatgD23) for v, surprisingly coincides with Eq.

(D15). Next we obtain from Eq(D7)

n nbP,
2. [—] ¥—=
9 \/niL D -

Therefore, the expressiaB.33 should be corrected and we

(D24)

subsection is devoted to special situations appearing in thget

presence of such parameters.

3. Special cases

\/szchy 2 r)gc
Sh n D Cl o

(D25)

In this subsection we treat three special cases that amghereC; is a nonuniversal parameter of order unity afad

realized an>n, if y<1, 2— y<<1, ornis extremely large.

is defined by Eq(3.32.
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Some peculiarities appear also at 2<<1. In this case
the function(3.195 can be approximated as

¢~2dvinv

if v>1 but (2— y)Inv<1. Then we obtain from Eq3.14

lyl?
UInUM2+ FRK[X(R+)_X(R+U1/7)]-

(D26)

2—vy
2d

H=—puv+

The expressionfD26) has the same structure as Ef11)
except for the logarithmic factor. Taking into accoumt
>1, we conclude that the Hamiltoniaip26) leads to the
conservation lawD12) which is satisfied with the same ac-

curacy 1 as previously. Therefore, we get instead of Eq.

(D13

dly|*P,
D(2— y)inv,

Ly \/ nd
(2=y)nv,’

(D27)

My Uy ™

where we used Eq.D14); its validity accounts for the in-
equalityv>1. One can check that the main contributiori-to
in Eq. (D26) at the end of the first stage is made byuv.
Equating— u, v, to H, we get

nv,~—. (D29)

C

Now we obtain the conditiom<n./(2—7), under which
the regime under consideration is realized. Simgel in the
regime, we have the same expressibi4) for 9 and, con-
sequently, the same estimat@33 for the structure func-
tions.

We finish this subsection with a discussion concerning

extremely largen. In accordance with the estimatéd315),
v, increases with increasing. Therefore, the last substage
of the first stage where>1 starts to play an essential role.
First of all we should correct Eq3.21), returning to Eq.
(3.20. If v=v, there, therv, RY on the right-hand side of
the relation can be substituted by. The contribution to the
integral on the left-hand side of E3.21) associated with
the last substagévhenwv increases from 1 t@,) can be
found by substitutingG(x)~ —x there. Thus the substage

makes the additional logarithmic contribution to the integral.
Taking the contribution into account, we get instead of Eq.

(3.27)
- 2T o) (D29)
82—y J(H.—H, 1 U
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Here we neglected the term originated frofp dv since
using Eq.(D15) the term can be estimated gs/yd and is
consequently negligible in comparison to the terms en-
tering S, via ¥. Substituting the expressiaib30) into Eq.
(3.2, we conclude that the correction related to the last con-
tribution in Eq.(D30) can be neglected in comparison to the
strongn dependence of". Nevertheless, the presence of the
additional term on the right-hand side of E@p29) shows
that our approach is broken at 2ln~+in(L/r) since H,
—H, ceases to be small there. Using the estimdids$), we
arrive at the conditior§3.35, which is the applicability con-
dition of our approach. Note that at li{)=vy In(L/r) the
scaling behavior o5, is destroyed.

4. Instanton near critical order

Here we will consider the case whenis close to the
critical value (3.28: |n—n./<n.. Thenv,<1 and upon
examining the last substage of the first stage and of the sec-
ond stage we can use the Hamiltonian, expanded over small
v.

If n<n. then we can take the Hamiltoniab1). The only
peculiarity of the consideration neat. is that the logarith-
mic contributions to the effective actio{8.13 and to the
left-hand side of the integraB.20 depend om—n,. In-
deed, the expressidB.25 shows thats(x) is a linear func-
tion of x only in the restricted interval

2—y
E|HC—H1|>U>U* .

Just the interval determines the value of the logarithm. This
means that we should substitute in the expressip® and
(D10

1 v*ni
In—HIn—z.
Uy (n—ng)

The substitution does not change the final ans{ie0) for
the action but influences the value of because of Eq.
(D7). Taking the fact into account we get the expression
(3.36 that replace Eq(3.29.

It is clear that ath—n, the differencen—n, starts to
compete withr/L, which destroys our construction. Let us
estimate the corresponding value of—n regarding n
<n,. It follows from the asymptoté3.25 that our consid-
eration is correct if H,—Hq)>dyv, /(2—y). Expressing
in the inequalityv, via r/L from Eq.(3.24 we obtain the
criterion (3.37). Note that the criterion implies the inequality

L
yInF>l,

which should be assumed for our treatment to be correct.

There appears also an analogous correction to the expressigiiherwise special consideration is needed.

(D17). Calculating the actiotD16) we get

(D30)

Let us now proceed to the case-n.. We should take
into account the next term of the expansiontbbverv in
comparison with Eq(D1), which should correct the value
(D6) of H; since we know thaH; is equal toH.. The
corresponding expression is
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H=—uv+

ly|?

+ 5 RIUX(R:)~x(RO)], (D3Y)

where the differencg(R.)— x(R_) should be expanded up
to second order oves. Equations(3.16 with the Hamil-
tonian(D31) lead to

1dv 5
Sag vTevi(ar—ag), (D32)
1d 1 ly|?
S dg(mo)= 5 aon’o+ R (Rv, (D33
42— 2(4—y)(2—
PNt G i 1 Y
dy dy

Equating the HamiltoniaiD31) to the value(3.22, we get

AL

5 (D35

MU=

at the end of the first stage. Note that duevjo<1, we can
use the estimate®?7).

Our next aim is to estimate, in terms ofn—n.. To do
so we will use the identitdH/dé= gH/d¢ that is correct for
any canonical system. Let us integrate the relation over th
second stage. Sindé=H at the first stage and =0 at the
end of the second stage we obtain

Iyl2
D
—R_x'(RO)1}.

~Hy=- [ dE[HRIX(R )~ x(ROT+RIIR X' (R.)

(D36)
Expanding the right-hand side of the relati@d36) up to

second order ovev, integrating by part€to remove high
derivatives ofy), and using Eqs(3.12, (D32), (D33), and
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(2.21), one can obtain the expression

|

X j déRY 7Y (R ) po®

fng

alazf d¢ RierX/(RJr)UL dEu2v3.

(D37)

The first term on the right-hand side of E§37) reproduces
the previous resul(D6) and the other terms are small cor-
rections proportional t@, .

We know that in the main approximation ovwet. we can
substituteH,=H.. Regardingn—n.<n., we neglect the
second term on the right-hand side of EB37). The last
two terms on the right-hand side of E@37) can be esti-
mated usingu,v,~yn., x~ P2, Ry~L, and the estima-
tion (D7) for |y|?. Combining all together we get

yai ly|?

yn
~ 2 (T

2

_ YN
4

—H,=

B ly|%a,
D

1+vy
n

X' (Ry)puv®

oyl

2D

(n_nc)z

2
Cc

V™Y (D39y)

n
Let us stress that due t@,>0 the last two terms on the
right-hand side of Eq(D37) are positive ify(R) is a mono-
tonic function, which is a reasonable condition. Therefore, a
solution of Eq.(D37) for v, , determined by the estimate
gD38), really exists. We conclude that there is an instantonic
Solution with nonmonotonic behavior af at any n—n,
<n,.

The last assertion should be corrected since it is true only
if L/r—o. At finite L/r there is a narrow region of very
smalln—n. where our scheme does not work. To establish
the corresponding criterion let us recall that our consider-
ation is valid ifv,<v, . It follows from Eq. (3.27) thatv,
~1/yIn%(L/r). Then, from the formuldD38) we get the in-
equality (3.37).

Finally, we can determine the structure functi@s[Eq.
(1.2)] in accordance with Eq(3.2). Collecting Egs.(D7),
(D17), and(D38), we obtain the formul43.36).
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